Меню

Зрительная труба кеплера рисунок

5.3. Схемы телескопических систем

Рассмотрим несколько типовых схем телескопических систем.

5.3.1. Схема Кеплера

В схеме Кеплера объективом и окуляром является положительная оптическая система (рис. 5.2). Объектив создает перевернутое действительное изображение в своей задней фокальной плоскости, которое можно наблюдать с помощью окуляра. Задняя фокальная плоскость объектива совпадает с передней фокальной плоскостью окуляра, так что падающий на объектив параллельный пучок лучей выходит из окуляра также параллельным.


Рис. 5.2. Схема Кеплера.

Одним из недостатков схемы Кеплера является большая длина оптической системы (), причем чем больше увеличение, тем длиннее должна быть система Кеплера. Например, при фокусном расстоянии окуляра и увеличении , фокусное расстояние объектива , а общая длина системы .

Еще одним недостатком системы Кеплера является перевернутое изображение. Это не имеет особого значения для исследования небесных тел, но представляет неудобство для наблюдения земных объектов. Поэтому в биноклях и зрительных трубах приходится применять оборачивающие системы, которые обычно ставятся между объективом и окуляром (рис. 5.3). Оборачивающие системы могут быть линзовые или призменные. Линзовые оборачивающие системы (рис. 5.3) еще больше увеличивают длину всей системы.


Рис. 5.3. Применение линзовых оборачивающих систем.

Призменные оборачивающие системы состоят из стеклянных призм, действующих, как зеркала (рис. 5.4). Они сокращают длину всей системы, но при этом увеличивается масса прибора, к тому же возникают трудности технологического характера, связанные с изготовлением и юстировкой призм. Такие системы обычно используются в биноклях большого увеличения.


Рис. 5.4. Призменная оборачивающая система.

Одним из главных достоинств системы Кеплера является наличие промежуточного изображения в фокусе объектива, куда можно поставить сетку (прозрачную пластинку со шкалой) и с ее помощью производить точные измерения углов и расстояний.

Оптические системы, построенные по схеме Кеплера, используются для телескопов, подзорных труб, дальномеров, морских биноклей большого увеличения (до ), а также для измерительных систем.

5.3.2. Схема Галилея

В телескопической системе по схеме Галилея в качестве объектива используется положительная оптическая система, а в качестве окуляра – отрицательная (рис. 5.5). Задний фокус положительного объектива совпадает с передним фокусом отрицательного окуляра. При таком расположении промежуточное изображение отсутствует.


Рис. 5.5. Схема Галилея.

Достоинствами схемы Галилея являются прямое изображение и меньшая длина по сравнению со схемой Кеплера. В такой схеме общая длина вычисляется не как сумма, а как разность (по модулю) фокусных расстояний объектива и окуляра: . Однако у этой схемы есть и свои недостатки. Во-первых, у системы Галилея малое поле зрения, причем чем больше увеличение телескопа, тем меньше поле зрения. Во-вторых, в системе Галилея отсутствует промежуточное изображение (некуда поставить сетку), поэтому использовать такую систему в измерительных приборах нельзя.

Использование системы Галилея (малая длина и прямое изображение) особенно удобно для театральных биноклей с увеличением от двух до трех крат. Система Галилея также применяется для систем сумеречного и ночного наблюдения и в видоискателях фотоаппаратов и видеокамер.

Читайте также:  Стандартное размерное соотношение труб

5.3.3. Схема Кассегрена

Зеркальные телескопические системы образуют изображение путем отражения света от зеркальной поверхности сферической или параболической формы. Наибольшее распространение получила двухзеркальная схема Кассегрена (рис. 5.5). После отражения на главном зеркале пучок лучей попадает на вспомогательное зеркало, которое направляет его обратно – через отверстие в главном зеркале. Фокальная плоскость в этой системе располагается за оправой главного зеркала.


Рис. 5.5. Схема Кассегрена.

В фокальной плоскости зеркала могут быть помещены фотопластинки для фотографирования небесных объектов или любая другая светоприемная аппаратура: спектрографы, фотометры и так далее. Изображение либо получается непосредственно на фотографической пластинке, либо исследуется визуально через окуляр.

Эта система широко применяется в телескопах, установлена она и в Большом Телескопе Азимутальном (БТА). БТА – самый большой оптический телескоп в мире (находится на Северном Кавказе) с главным зеркалом диаметром 6 метров (его вес 650 тонн). Телескоп установлен в башне высотой 53 м с диаметром купола 45,2 м. В настоящее время телескоп обеспечивает выполнение важнейших научных программ.

Расстояние от последней поверхности (от большого зеркала) до фокуса значительно меньше фокусного расстояния, поэтому длина системы Кеплера с таким объективом может быть в несколько раз короче, чем если бы использовался обычный линзовый объектив.

Для того, чтобы обеспечить как можно большее увеличение при стандартном размере выходного зрачка, необходимо применение объективов с предельно большим диаметром. Увеличение диаметра входного зрачка позволяет увеличить и светосилу, и разрешающую способность, что необходимо, скажем, для наблюдения очень слабых звезд. Технически изготовить зеркало большого диаметра легче, чем линзу, так как оптические неоднородности в толще стекла для зеркала не имеют значения, поэтому применение зеркальных систем позволяет увеличить диаметр входного зрачка, а тем самым – увеличение, светосилу и разрешающую способность телескопической системы. К тому же в зеркальных объективах хроматические аберрации намного меньше, чем в линзовых.

Для получения новых научных данных о звездах и галактиках требуется увеличение размеров телескопа. Но чем больше телескоп, тем труднее добиться безукоризненного по качеству изображения. На качество изображения влияют земная атмосфера, остаточные аберрации оптической системы, погрешности оптических поверхностей, термические и весовые деформации оптики, погрешности юстировки телескопа и многое другое.

Самые крупные телескопы мира имеют диаметр зеркала 5-6 метров. Это считается пределом конструкторских возможностей: дальнейшее увеличение диаметра зеркала, осложнив как его изготовление, так и создание самого телескопа, лишь немногим увеличит его разрешающую способность.

Одним из факторов, наиболее сильно воздействующих на разрешающую способность телескопа, является влияние земной атмосферы. Величина размазывания изображения, вызванного атмосферной турбулентностью (неоднородностью показателя преломления атмосферы), составляет несколько секунд даже в самых лучших с точки зрения астроклимата местах. Это, по крайней мере, в 10 раз больше того, что может дать телескоп, зеркало которого изготовлено с точностью, близкой к теоретическому пределу.

Читайте также:  Муфта соединительная для труб металлических 50мм

Одним из способов повышения разрешающей способности телескопов является вынос его за пределы земной атмосферы. В космических телескопах на качество изображения не влияет неоднородность атмосферы, кроме того, с их помощью возможно проводить исследования в области ультрафиолетовых и рентгеновских лучей, которые земная атмосфера пропускает слабо. Все это позволяет повышать разрешающую способность телескопа в десятки и сотни раз.

Источник

Лупа. Микроскоп и телескоп

Для невооруженного глаза наименьший угол зрения приблизительно равен 1′. Этот угол определяется мозаичным строением сетчатки, а также волновыми свойствами света. Существует ряд приборов, предназначенных для увеличения угла зрения – лупа, микроскоп, зрительная труба. При визуальных наблюдениях глаз является неотъемлемой частью оптической системы, поэтому ход лучей в приборах, вооружающих глаз, зависит от аккомодации глаза. При анализе работы оптических приборов для визуальных наблюдений удобнее всего полагать, что глаз наблюдателя аккомодирован на бесконечность . Это означает, что лучи от каждой точки предмета, пройдя через прибор, попадают в глаз в виде параллельного пучка. В этих условиях понятие линейного увеличения теряет смысл. Отношение угла зрения ? при наблюдении предмета через оптический прибор к углу зрения ? при наблюдении невооруженным глазом называется угловым увеличением:

Угловое увеличение является важной характеристикой оптических приборов для визуальных наблюдений.

Следует отметить, что в некоторых учебниках полагается, что глаз наблюдателя аккомодирован на расстояние наилучшего зрения нормального глаза d 0 . В этом случае ход лучей в приборах несколько усложняется, но угловое увеличение прибора приближенно остается таким же, как и при аккомодации на бесконечность.

Простейшим прибором для визуальных наблюдений является лупа. Лупой называют собирающую линзу с малым фокусным расстоянием (F

где h – размер предмета. При рассматривании этого же предмета невооруженным глазом его следует расположить на расстоянии d 0 = 25 см наилучшего зрения нормального глаза. Предмет будет виден под углом

Отсюда следует, что угловое увеличение лупы равно

Линза с фокусным расстоянием 10 см дает увеличение в 2,5 раза. Работу лупы иллюстрирует рис. 6.1.1.

Действие лупы: а – предмет рассматривается невооруженным глазом с расстояния наилучшего зрения d 0 = 25 см; б – предмет рассматривается через лупу с фокусным расстоянием F.

Микроскоп

Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива O 1 и окуляра O 2 (рис. 6.1.2).

Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы.

Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от каждой точки предмета распространяются после окуляра параллельным пучком.

Читайте также:  Резьбовое соединение труба в трубе чертеж

Мнимое изображение предмета, рассматриваемое через окуляр, всегда перевернуто. Если же это оказывается неудобным (например, при прочтении мелкого шрифта), можно перевернуть сам предмет перед объективом. Поэтому угловое увеличение микроскопа принято считать положительной величиной.

Как следует из рис. 6.1.2, угол зрения предмета, рассматриваемого через окуляр в приближении малых углов,

Приближенно можно положить d = F 1 и f = l, где l – расстояние между объективом и окуляром микроскопа («длина тубуса»). При рассматривании того же предмета невооруженным глазом

В результате формула для углового увеличения микроскопа приобретает вид

Хороший микроскоп может давать увеличение в несколько сотен раз. При больших увеличениях начинают проявляться дифракционные явления.

У реальных микроскопов объектив и окуляр представляют собой сложные оптические системы, в которых устранены различные аберрации.

Телескоп

Т елескопы ( зрительные трубы ) предназначены для наблюдения удаленных объектов. Они состоят из двух линз – обращенной к предмету собирающей линзы с большим фокусным расстоянием (объектив) и линзы с малым фокусным расстоянием (окуляр), обращенной к наблюдателю. Зрительные трубы бывают двух типов:

Зрительная труба Кеплера , предназначенная для астрономических наблюдений. Одна дает увеличенные перевернутые изображения удаленных предметов и поэтому неудобна для земных наблюдений.

Зрительная труба Галилея , предназначенная для земных наблюдений, дающая увеличенные прямые изображения. Окуляром в трубе Галилея служит рассеивающая линза.

На рис. 6.1.3 изображен ход лучей в астрономическом телескопе. Предполагается, что глаз наблюдателя аккомодирован на бесконечность, поэтому лучи от каждой точки удаленного предмета выходят из окуляра параллельным пучком. Такой ход лучей называется телескопическим . В астрономической трубе телескопический ход лучей достигается при условии, что расстояние между объективом и окуляром равно сумме их фокусных расстояний F= F 1 + F 2 .

Зрительная труба (телескоп) принято характеризовать угловым увеличением g . В отличие от микроскопа, предметы, наблюдаемые в телескоп, всегда удалены от наблюдателя. Если удаленный предмет виден невооруженным глазом под углом j , а при наблюдении через телескоп под углом y , то угловым увеличением называют отношение

Угловому увеличению g , как и линейному увеличению, можно приписать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Угловое увеличение астрономической трубы Кеплера отрицательно, а земной трубы Галилея положительно.

Угловое увеличение зрительных труб выражается через фокусные расстояния:

Телескопический ход лучей.

В качестве объектива в больших астрономических телескопах применяются не линзы, а сферические зеркала. Такие телескопы называются рефлекторами . Хорошее зеркало проще изготовить, кроме того, зеркала в отличие от линз не обладают хроматической аберрацией.

У нас в стране построен самый большой в мире телескоп с диаметром зеркала 6 м. Следует иметь в виду, что большие астрономические телескопы предназначены не только для того, чтобы увеличивать угловые расстояния между наблюдаемыми космическими объектами, но и для увеличения потока световой энергии от слабосветящихся объектов.

Источник

Adblock
detector