Меню

Трубы из сшитого полиэтилена для отопления в стяжке пола

Система напольного отопления на базе труб из сшитого полиэтилена

Выбираете энергоэффективные решения?

Обратите внимание на геотермальные тепловые насосы FORUMHOUSE

Геотермальный тепловой насос EU (старт/стоп)

Геотермальный тепловой насос IQ (псевдоинвертор)

Геотермальный тепловой насос IQ (инвертор)

Для энергоэффективного коттеджа, возводимого в рамках проекта FORUMHOUSE «ДОМ ЗА ГОД», выбран фундамент УШП. Одним из достоинств этого высокотехнологичного основания является интегрированная система напольного водяного отопления. За процессом монтажа теплого пола в коттедже портала можно проследить в истории проекта. В фундаментную плиту дома заложена система напольного отопления Uponor Classic с применением труб из сшитого полиэтилена. В данном материале рассмотрим основы и нюансы устройства подобных систем, которыми делятся специалисты в формате мастер-класса:

  • Чем обоснован выбор напольной системы отопления.
  • Почему необходим теплоизоляционный барьер.
  • Особенности устройства систем водяного теплого пола.
  • Монтаж систем напольного отопления.

Почему выбирают теплый пол

Водяной теплый пол – это низкотемпературная отопительная система, в которой нагревательным элементом является вмонтированный в фундамент или перекрытия контур с жидким теплоносителем. Магистраль подключается к коллекторным узлам, обеспечивающим циркуляцию жидкости и поддержание заданного температурного режима. Основная масса контуров в современных системах выполняется трубами из сшитого полиэтилена (PE-Xa), хотя возможно использование и других разновидностей (металлопластик, гофрированная нержавеющая сталь).

В зависимости от типа основания (грунт, плиты перекрытий, деревянные лаги), монтируют бетонные и плитные (на базе ГКЛ, ОСП, ЦСП и др.) системы теплого пола. Наиболее распространены бетонные системы водяного напольного отопления – контур замуровывается в стяжку чернового пола с соблюдением рекомендованных параметров.

Стяжка системы напольного отопления должна изготавливаться в соответствии с требованиями СНиП 2 .03 .13-88 «Полы» и СНиП 3 .04 .01-87 «Изоляционные и отделочные покрытия». Общая толщина стяжки рассчитывается в соответствии с несущей способностью, указываемой в техническом задании. Толщина стяжки над трубами должна составлять от 30 мм до 70 мм, обычно она составляет 45 мм над трубой. Слой менее 30 мм не только более подвержен деформациям и растрескиванию, но и недостаточен для эффективного теплосъема и равномерного распределения тепла.

Системы напольного отопления повсеместно распространены в качестве дополнительного источника обогрева, но в последнее время их все чаще выбирают и в качестве основного источника тепла. Это объясняется несколькими факторами:

  • Принцип действия – поступающее снизу тепло более равномерно прогревает весь объем помещения, по мере подъема к потолку температура воздуха понижается.
  • Экономичность – на поддержание комфортной температуры в помещении требуется меньше энергоносителей, что позволяет сократить расходы на отопление.
  • Эффективность – достаточно нагрева теплоносителя до 30-40⁰С для выхода на рабочий режим.

Выбор оптимального способа отопления зависит не столько от показателей самих систем, сколько от параметров энергосбережения конструкции. Теплый пол в качестве основного отопления показан в энергоэффективных домах, где теплопотери сведены к минимуму.

Зачем нужна теплоизоляция

Независимо от разновидности системы напольного отопления и типа основания, под контур обязательно укладывается слой теплоизоляционного материала.

Изоляция конструкции пола выполняется для уменьшения потерь тепла в направлении вниз. Теплоизоляционный слой должен состоять из жестких плит плотностью не менее 35 кг/мᶟ, чаще всего это ЭППС. Толщина теплоизоляционного слоя должна составлять 30-90 мм, в зависимости от теплопотерь и теплового режима помещений. Как правило, для цокольных этажей толщина слоя составляет 90 мм, для прочих достаточно 30 мм.

Чтобы добиться максимальной теплоотдачи, используют или утеплитель с фольгированным слоем, или поверх утеплителя еще слой материала с отражающей поверхностью. Это также позволит уберечь поверхность плит от контакта с цементным молочком при заливке. С этой же целью используют гидроизоляцию – специальную, входящую в линейку системы определенного производителя, или толстую полиэтиленовую пленку.

Особенности устройства напольного отопления

Любая бетонная система теплого пола должна быть «плавающей» – не связанной ни с основанием, ни с ограждающими конструкциями. Коэффициент линейного расширения бетонной стяжки теплого пола составляет 0,5 мм/м при нагревании до 40⁰С. Поэтому необходима изоляция бетонной плиты, чтобы избежать напряжений в конструкции зданий. Нижний разрыв обеспечивается слоем утеплителя, по периметру используется демпферная лента, она и температурные расширения компенсирует, и теплопотери через боковые стены перекрывает. Кроме того, будучи влагостойкой, она предотвращает попадание влаги из стяжки в стены.

Для усиления бетонной стяжки применяется арматурная сетка, которая также может служить основанием для фиксации трубы при монтаже системы.

Металлическая арматурная сетка с ячейкой 150х150х4 мм или 100х100х4 мм служит для усиления бетонной стяжки и может являться основанием, к которому пластиковыми хомутами крепится труба теплого пола. При одинарном армировании сетка укладывается на полистирол, при двойном армировании может дополнительно укладываться поверх труб теплого пола.

Кроме того, для улучшения эксплуатационных характеристик стяжки в раствор вводятся различные модифицирующие добавки, самая распространенная – полипропиленовая фибра.

Чтобы минимизировать возможность разрушения стяжки и чистового покрытия из-за теплового расширения в процессе работы теплого пола, площадь поверхности, обогреваемой одной петлей, не должна превышать 30 м² (длина стороны до 8 м). Когда эти габариты превышаются, площадь делят деформационными (компенсационными) швами, по периметру которых укладывают демпферную ленту. Трубы, проходящие через деформационные швы, обязательно защищают специальным кожухом или гофрированной трубой, не допускается попадание под швы петель контура, только трубопроводов (напорный и обратный).

Монтаж систем напольного отопления

Монтаж систем водяного теплого пола проводится в несколько этапов.

Подготовка основания – основание под слоем теплоизоляционных плит должно быть максимально ровным. Если при проверке двухметровым правилом просвет составляет больше 7 мм, необходима заливка выравнивающей смесью. Перед укладкой плит по всему периметру впритык к основанию наклеивается демпферная лента.

Укладка изоляции – толщина слоя изоляции высчитывается, исходя из региона проживания, типа основания (грунт или перекрытия) и характеристик здания. Плиты с пазовой системой укладываются без дополнительной фиксации, швы состыкованных плит проклеивают специальным скотчем. «Фартук» демпферной ленты укладывается поверх плит, после чего поверхность застилается гидроизоляцией или мультифольгой.

Использование мультифольги увеличивает количество тепла, излучаемого вверх, уменьшая количество тепловых потерь вниз. Она водонепроницаема, что предотвращает проникновение цементного молочка и влаги в лежащий под ней теплоизоляционный материал.

Укладка контура – труба укладывается с шагом 100-300 мм по выбранному типу контура (змеевик, двойной змеевик, спираль). Самый распространенный способ фиксации – к арматурной сетке крепежной проволокой или пластиковыми затягивающимися хомутами.

Читайте также:  Что такое обмуровка трубы

Также применяется специальный крепеж, утапливаемый острым концом в плиту изоляции, и пластиковые панели с рельефными фиксаторами. При использовании панелей сначала выполняется их укладка, но экономится время на фиксации трубы – она раскладывается по рисунку по мере разматывания из бухты с учетом рекомендаций.

Каждая петля тепловой трубы начинается и заканчивается в распределительном коллекторе – без стыков. Трубопроводы не должны иметь изломов в местах ее поворота на 90⁰.

После укладки контура петли подсоединяются к коллекторам посредством резьбовых адаптеров, сшитый полиэтилен беспроблемно сгибается под нужным углом вручную и заводится в коллекторный шкаф.

Гидравлические испытания – по существующим нормативам для проверки герметичности системы в ней посредством специального оборудования (опрессовщик) нагнетается давление, в полтора раза превышающее рабочее, недопустимо наличие малейших протечек.

Бетонирование – после проведения гидравлических испытаний выполняется заливка стяжки, поверхность должна быть сухой и чистой, без пыли и загрязнений, при необходимости для удаления мусора используется строительный пылесос.

Желательно защитить заливку от сквозняков и не допускать пересыхания в процессе набора бетоном марочной прочности.

Тепловые испытания – после полного затвердевания бетона (3-4 недели) проводят тепловое испытание водяной напольной системы, начинают с нагрева теплоносителя до 25⁰С, на рабочий температурный режим выходят постепенно, прибавляя в день по 5⁰С. Чем толще слой стяжки, тем больше времени потребуется для выхода системы на стабильный режим.

Правильно смонтированная водяная система напольного отопления с трубой из сшитого полиэтилена способна служить десятилетиями, не требуя демонтажа и замены.

Источник

Мифы о трубах из сшитого полиэтилена

На сегодняшний день, к сожалению, маркетинговые ходы и рекламные уловки всё чаще влияют на различные технические решения и выбор в проект того или иного материала и оборудования. Всё чаще у проектировщиков вместо полноценного технического паспорта или каталога на оборудование на столе оказывается рекламные буклеты и брошюры, по которым он и производит подбор. То, что недопустимо писать в серьёзной технической литературе, перекочевывает на страницы таких буклетов. Зачастую маркетологи присваивают своему товару завышенные или вовсе несуществующие показатели, вводя инженеров в заблуждение. Как правило, незаурядные технические особенности оборудования в буклетах представляются как неоспоримые преимущества. И наоборот, любая техническая информация о конкурентной продукции представляется в виде существенных и неисправимых недостатков.

Все эти факторы в конечном cчете приводят к неверному выбору материалов и оборудования, что в итоге может привести к аварийной ситуации. Вина в этом случае ложится на плечи инженера-проектировщика, так как у любого производителя наряду с красочной рекламой, триумфально описывающей все прелести товара, имеются либо сноски мелким шрифтом, либо тщательно скрываемый от людского глаза технический паспорт с реальными данными. Чаще всего в рекламных брошюрах приводится информация, не противоречащая паспортным данным, но преподнесенная таким образом, что у людей создается ложное представление о реальных технических особенностях товара. Например, фразы «труба выдерживает температуру 95 ºС и давление 10 бар» и «труба выдерживает температуру теплоносителя 95 ºС при его давлении 10 бар в течение 50 лет» кардинально отличаются друг от друга. В первом случае загадана загадка: труба способна выдержать 95 ºС температуру теплоносителя и 10 бар одновременно, либо это две критические точки применения данной трубы? А самое главное – отсутствует временной показатель, то есть неизвестно, в течение какого времени трубопровод выдерживает данные параметры – пять минут, час или 50 лет?

В этой статье приведены основные маркетинговые уловки и мифы, распространяемые производителями труб из сшитого полиэтилена (PEX).

1-я группа мифов – о превосходстве одного способа сшивки над другим

Практически любой производитель труб из PEX утверждает, что именно способ сшивки их труб самый лучший, а прочие никуда не годятся. Только полиэтилен, сшитый по их методике, будет обладать повышенными прочностными характеристиками и показателями надёжности.

Для начала хотелось бы напомнить некоторые сведения о сшивке полиэтилена. Под сшивкой подразумевается создание пространственной решётки в полиэтилене высокой плотности за счёт образования объёмных поперечных связей между макромолекулами полимера. Относительное количество образующихся поперечных связей в единице объёма полиэтилена определяется показателем «степени сшивки». Степень сшивки – это отношение массы полиэтилена, охваченного трёхмерными связями к общей массе полиэтилена. Всего известно четыре промышленных способа сшивки полиэтилена, в зависимости от которых сшитый полиэтилен индексируется соответствующей литерой.

Таблица 1. Виды сшивки полиэтилена

Минимальная степень сшивки рабочего слоя

Вид способа по методу воздействия

Сшивка органическими пероксидами или гидропероксидами

Сшивка органическими силанидами (силанами)

Сшивка потоком элементарных частиц

Пероксидная сшивка (метод «a»)

Метод «a» является химическим способом сшивки полиэтилена при помощи органических пероксидов и гидропероксидов.

Органические пероксиды представляют из себя производные перекиси водорода (HOOH), в которых один или два атома водорода заменены органическими радикалами (HOOR или ROOR). Самый популярный пероксид, применяемый при производстве труб – dimethyl-2.5-di-(bytylperoxy)hexane. Пероксиды относятся к особо опасным веществам. Их получение – технологически сложный и дорогостоящий процесс.

Для получения PEX по методу «а» полиэтилен перед экструдированием расплавляется вместе с антиокислителями и пероксидами (процесс Томаса Энгеля), рис. 1.1. С повышением температуры до 180–220 ºС пероксид разлагается, образуя свободные радикалы (молекулы со свободной связью), рис. 1.2. Радикалы пероксидов забирают у атомов полиэтилена по одному атому водорода, что приводит к образованию свободной связи у атома углерода (рис. 1.3). В соседних макромолекулах полиэтилена атомы углерода, имеющие свободные связи, объединяются (рис. 1.4). Количество межмолекулярных связей составляет 2–3 на 1000 атомов углерода. Процесс требует жесткого контроля за температурным режимом в процессе экструзии, когда происходит предварительная сшивка, и в ходе дальнейшего нагревания трубы.

Метод «а» самый дорогой. Он гарантирует полный объёмный охват массы материала воздействием пероксидов, так как они добавляются в исходный расплав. Однако этот метод требует того, чтобы сшивка была не ниже 75 % (по российским нормам – не ниже 70 %), что делает трубы из данного материала более жёсткими по сравнению с другими способами сшивки.

Читайте также:  Инструмент для нарезки резьбы металлических труб

Силановая сшивка (метод «b»)

Метод «b» является химическим способом сшивки полиэтилена при помощи органосиланидов. Органосиланиды представляют соединения кремния с органическими радикалами. Силаниды – ядовитые вещества.

В настоящее время для производства PEX-труб по методу «b» в основном используется винилтриметаксилоксан (H2C=CH)Si(OR)3 (рис. 2.1). При нагревании связи винильной группы разрушаются, превращая его молекулы в активные радикалы (рис. 2.2). Эти радикалы замещают атом водорода в макромолекулах полиэтилена (рис. 2.3). Затем полиэтилен обрабатывают водой либо водяным паром, органические радикалы при этом присоединяют молекулу водорода из воды и образуют стабильную гидроокись (органический спирт). Соседние радикалы полимера замыкаются через связь Si-O, формируя пространственную решётку (рис. 2.4). Вытеснение воды из PEX ускоряется при помощи оловянного катализатора. Процесс окончательной сшивки происходит уже в твёрдой стадии изделия.

Радиационная сшивка (метод «c»)

Метод «c» заключается в воздействии на группу C-H потоком заряженных частиц (рис. 3.1). Это может быть поток электронов или гамма-лучей. При таком воздействии часть связей C-H разрушается. Атомы углерода соседних макромолекул, у которых был выбит атом водорода, объединяются друг с другом (рис. 3.3). Облучение полиэтилена потоком частиц происходит уже после его формования, то есть в твёрдом состоянии. К недостаткам данного метода можно отнести неизбежную неравномерность сшивки.

Невозможно расположить электрод так, чтобы он был равноудалён ото всех участков облучаемого изделия. Поэтому полученная труба будет иметь неравномерную сшивку по длине и по толщине.

В качестве источника облучения чаще всего используется циклический ускоритель электронов (бетатрон), который относительно безопасен как в производстве, так и в применении готовой трубы.

Несмотря на это во многих европейских странах производство труб сшитых методом «с» запрещено.

Для удешевления процесса сшивки иногда используют в качестве источника излучения радиоактивный кобальт (Co60). Данный метод безусловно дешевле, так как труба просто помещается в камеру с кобальтом, однако безопасность использования таких труб весьма сомнительна.

Заблуждение № 1: «Сшивка перекидным способом (PEX-a) по прочности получаемого материала лучше прочих, потому что регламентированная минимальная степень сшивки для данного метода больше, нежели для остальных метолов. А чем больше степень сшивки PEX, тем прочнее материал»

Действительно, ГОСТ Р 52134 регламентирует различную минимальную допустимую степень сшивки труб из PEX для разных способов изготовления (табл. 1), и правда то, что при увеличении степени сшивки увеличивается прочность труб.

Однако сравнивать степени сшивки PEX-a, PEX-b и PEX-c недопустимо, так как образованные в результате сшивки молекулярные связи данных материалов имеют различную прочность, а следовательно даже сшитые до одной и той же степени данные виды полиэтилена будут иметь различную прочность. Энергия связи типа С-С, которая образуется в полиэтилене, сшитом методом «a» и «c» составляет порядка 630 Дж/моль, в то время как энергия связи типа Si-C, которая образуется в полиэтилене, сшитом методом «b» составляет 780 Дж/моль. На физико-химические и технические свойства влияет и взаимодействие макромолекул за счет водородных связей, возникающих в полимере вследствие наличия полярных групп и активных атомов, а также образование ассоциатов в результате взаимодействия самих поперечных связей. Это в первую очередь характерно для силанольносшитого полимера, где имеется большое число силанольных групп, способных образовывать дополнительные узлы зацепления в аморфных областях, повышающие плотность структурной сетки (которая на 30 % больше, чем при пероксидом, и в 2,5 раза – чем при радиационном сшивании) и уменьшающие деформируемость при высоких температурах.

Стендовые испытания труб из сшитых полиэтиленов показывают некоторое прочностное преимущество силановой сшивки. Так, при температуре испытания 90 °C для труб диаметром 25 мм и длиной 400 мм давление разрушения труб из РЕХ-а, PEX-b и РЕХ-с составило соответственно 1,72, 2,28 и 1,55 МПа (В.С. Осипчик, Е.Д. Лебедева, «Сравнительный анализ эксплуатационных свойств сшитых различными методами полиолефинов и улучшение физико-химических характеристик силанольносшитого полиэтилена», 24 мая 2011 г.).

Таким образом, заявления о том, что PEX-a является самым прочным материалом из-за большей степени сшивки, не соответствуют действительности. Данный фактор является скорее недостатком, нежели достоинством этого метода сшивки.

Метод сшивки – это не самый важный показатель трубы при её выборе. В первую очередь следует убедиться, что полиэтилен, из которого сделана труба, действительно сшит. Некоторые производители недосшивают или вовсе не сшивают трубу, при этом указывают на ней те же характеристики что и на качественные PEX трубы.

Например, в мае 2013 г. на территории Украины были выведены из оборота трубы фирмы GROSS. Под этой маркой распространялись трубы из сшитого полиэтилена, на самих трубах была маркировка PEX (рис. 4), но по факту эти трубы состояли из обычного несшитого полиэтилена, стоит ли говорить об их эксплуатационных характеристиках? Есть несложный способ определить, что перед вами – сшитый полиэтилен или подделка из обычного полиэтилена. Для этого кусочек трубы нужно нагреть до температуры 150–180 ºС, обычный полиэтилен при такой температуре теряет свою форму, а сшитый за счёт межмолекулярных связей сохраняет свою форму даже при таких высоких температурах (рис. 5).

Рис. 4. Маркировка на трубе Gross

Рис. 5. Трубы Gross (образец 7) и VALTEC PEX-EVOH (образец 6) поле прогрева в печи в течение 30 мин при температуре 180 ºС

Заблуждение № 2: «Только полиэтилен, сшитый по методу «a», обладает свойствами температурной памяти, полиэтилены сшитые другими способами данным свойством не обладают».

Что в данном случае подразумевается под «эффектом температурной памяти»? Суть данного эффекта заключается в том, что предварительно деформированная труба после прогрева восстанавливает свою исходную форму, которую она имела до деформации. Это свойство проявляется из-за того, что при изгибе и деформации молекулярно-связанные участки сжимаются или растягиваются, при этом накапливая внутреннее напряжение. После прогрева в местах деформации упругость материала снижается. Внутренние напряжения, накопленные в процессе деформации, создают в толще «размягшего» материала усилия, направленные в сторону исходной формы трубы. Под воздействием этих усилий трубы стремится восстановиться.

Читайте также:  Сужающаяся труба как называется

Рис. 6.1. Излом трубы VALTEC PEXEVOH (способ сшивки – PEX-b) и ее восстановление после прогрева до 100 °С

Рис. 6.2. Излом трубы из PEX-а с антидиффузионным слоем и ее восстановление после прогрева до 100 °С

Рис. 6.3. Излом трубы из PEXc без антидиффузионного слоя и ее восстановление после прогрева до 100 °С (неокрашенный сшитый полиэтилен при высоких температурах становиться прозрачным)

На рисунках 6.16.3 показано восстановление труб с различными способами сшивки после залома. При всех способах сшивки трубы восстановили свою первоначальную форму. На трубах, покрытых антидиффузионным слоем, после восстановления образовались складки. В этих местах антидиффузионный слой отслоился от слоя PEX. Это не влияет на характеристики трубы, так как рабочим слоем является слой PEX, который полностью восстановился.

Эффект памяти присущ любому сшитому полиэтилену. Отличие PEX-a в технике восстановления заключается лишь в том, что PEX-a сшивается во время экструзии, и первоначальная форма, которую стремится вернуть трубопровод, – прямая. PEX-b и PEX-с, как правило, сшиваются уже после формирования в бухты, и, соответственно, форма, к которой будут стремиться трубопроводы, – круг с радиусом, равным радиусу бухты.

Заблуждение № 3: «Сшивка методом «b» не обеспечивает требуемую гигиеничность труб, так как силаниды, применяемые при производстве данных труб, токсичны».

Действительно, кремневодороды (SiH4 – Si8H18), применяемые для получения PEX-b, крайне ядовиты. Однако кремневодороды для сшивки полиэтилена применяют только в кабельной промышленности. Для производства труб используется органосиланиды, которые тоже ядовиты, но их отличительной особенностью является то, что при сшивке они либо полностью переходят в химически связанное состояние, либо превращаются в химически нейтральный органический спирт, который вымывается при гидратации трубопроводов. На сегодняшний день самым распространённым реагентом для сшивки полиэтилена методом «b» является винилтриметаксилан (упрощенная формула: С2Н4Si (OR)3).

Основным показателем безопасности трубопровода и фитингов является гигиенический сертификат. Только трубы и фитинги, на которые есть данный сертификат, допустимы к установке в системах питьевого водоснабжения.

Заблуждение № 4: «Только у труб PEX-a степень сшивки равномерна по всему сечению, в то время как у других труб сшивка не равномерна».

Основным преимуществом сшивки методом «а» является то, что пероксиды добавляются в расплавленный полиэтилен до его экструзии в трубу, и сшивка трубы при должном внимании к температурам и дозировкам пероксидов будет равномерна.

Когда трубопроводы из сшитого полиэтилена массово не применялись, у сшивок методом «b» и «c» действительно существовал недостаток, заключающийся в неравномерности сшивки по длине и ширине трубопровода. Однако, когда объём производства труб достиг нескольких километров в неделю, возник вопрос о повышении качества и автоматизации данных видов сшивки. Силановым методом можно равномерно сшить трубопровод, подобрав правильную дозировку реактивов, точно поддерживая температурные и временные параметры обработки трубы, а также используя катализаторы (олово).

К тому же современный метод ввода силана отличается от первоначального, если раньше силан добавлялся в расплав полиэтилена при экструзии (метод В-SIOPLAST), то сейчас, как правило, силан предварительно смешивается с пероксидом и некоторым количеством полиэтилена и только потом добавляется в экструдер (метод В-MONOSIL).

Заводы, производящие большие объёмы труб, давно методом проб и ошибок вышли на идеальную технологию сшивки, а автоматизация производства позволила получать трубы со стабильными характеристиками. Таким образом, проблема неравномерной сшивки трубопровода остаётся только у мелких, неавтоматизированных производств.

Заблуждение № 5: «PERT является одним из видов сшитого полиэтилена, и не уступает ему по характеристикам».

Термостойкий полиэтилен PERT является сравнительно новым материалом, применяемым для производства труб. В отличие от обычного полиэтилена, у которого в качестве сополимера используется бутен, в PERT сополимером является октен (октилен С8H16). Молекула октена имеет протяжённую и разветвленную пространственную структуру. Образуя боковые ветви основного полимера, сополимер создаёт вокруг главной цепи область взаимопереплетённых цепочек сополимера. Эти ветви соседних макромолекул образуют пространственное сцепление не за счёт образования межатомных связей как у PEX, а за счёт сцепления и переплетения своих «ветвей»

Термоустойчивый полиэтилен обладает рядом свойств сшитого полиэтилена: стойкость к высоким температурам и ультрафиолетовым лучам. Однако данный материал не обладает долговременной стойкостью к высоким температурам и давлению, а также является менее кислотостойким, чем PEX. На рис. 7 представлены графики длительной прочности сшитого полиэтилена PEX и высокотемпературного полиэтилена PERT, взятые из ГОСТ Р 52134-2003 с изменением № 1. Как видно из графиков, сшитый полиэтилен со временем мало теряет в своей прочности, даже при высоких температурах. При этом график падения прочности прямой и легкопрогнозируемый. У PERT график имеет излом, причём при высоких температурах этот излом наступает уже через два года эксплуатации. Точка излома называется критической, при достижении этой точки материал начинает активно ускорять потерю прочности. Всё это приводит к тому, что труба, которая достигла критической точки, очень быстро выходит из строя.

Рис. 7. Эталонные кривые длительной прочности труб из PEX (слева) и PERT (справа)

К тому же из-за отсутствия связей между макромолекулами PERT не обладает свойствами температурной памяти.

Заблуждение № 6: «PEX-трубы безоговорочно можно использовать для систем радиаторного отопления».

Условия применимости пластиковых и металлопластиковых трубопроводов на территории Российской Федерации регламентируются ГОСТ 52134-2003. Так как на прочность пластиковых трубопроводов довольно ощутимо влияет время воздействия на них теплоносителя с определённой температурой, то для них установлены классы эксплуатации (табл. 2), которые отражают характер воздействия определённых температур на трубу в течение всего срока эксплуатации.

Таблица 2. Классы эксплуатации полимерных трубопроводов

Источник

Adblock
detector