Меню

Схема сварки труб малого диаметра

Особенности сварки труб малого диаметра

В бытовом и промышленном масштабах применяется трубы различных диаметров. Для их соединения существует множество способов. Самый распространенный метод для металлических изделий – сварка. Учитывая диаметры изделий, у каждой категории есть свои особенности. Например, трубы малого диаметра имеют свои сложности в ключе соединения при помощи сварки. Рассмотрим их подробнее.

В чем сложности?

Какая основная сложность при таком процессе? Конечно же, она связана с большой вероятностью полного проплавления изделий в определенных местах. А отверстия, которые при этом получаются, достаточно сложно заварить.

Пример сварки труб малых диаметров

Если к внешнему облику и форме шва нет особых требований (такое встречается при строительстве не ответственных трубопроводов), толщину стенок 1,5-2,5 мм можно соединять на постоянном токе прямой полярности. Для этого могут использоваться обычные выпрямители или преобразователи для сварки. Что касается электродов, то их диаметр находится в пределах от 3 до 4 мм. Ток используется на уровне от 140 до 180 Ампер.

Для сварки труб с повышенными требованиями по форме и внешнему виду шва, а также с более тонкими стенками, используются малые токи и электроды меньшего диаметра:

  • для тавровых соединений ток увеличивается до 20 процентов;
  • для выполнения соединения внахлест – до 15 процентов.

Чтобы сваривать на малых токах, могут применяться электроды со специальными покрытиями. Именно благодаря такому приему дуга не только легко возбуждается, но и устойчиво горит. Чтобы получить швы с большим утолщением, можно применить замедленное плавление электрода.

Для соединения углеродистой стали могут использоваться, например, электроды марки ОМА-2. Они состоят из: жидкого стекла (около 16 процентов), муки (46,8 процентов), калиевой селитры (2 процента), ферросилиция (5,2 процента), марганцевой руды (3,5 процента), ферромарганца (6 процентов) и титанового концентрата (36,5 процента).

Если нужно соединить низколегированную и углеродистую сталь, могут использоваться электроды марки МТ-2. Их состав: декстрин (8 процентов), полевой шпат (20 процентов), хромовокислый калий (2 процента), концентрат титановой руды (50 процентов) и ферромарганец (20 процентов). Сварка выполняется на прямой полярности постоянным током.

Также необходимо отметить, что трубы малого диаметра (тонколистовой металл) лучше соединять на толстых теплоотводящих медных подкладках. При этом не применяется метод поперечного движения электрода, а между изделиями нет зазора.

Вместо подкладки можно пользоваться таким методом. Между кромками закрепляется стальная полоска. По ней выполняется сварка. Кромки будут плавиться под действием тепла дуги.

Чтобы устранить вероятность прожога тонколистового металла (толщина стенки трубы 0,5-1 мм), процесс выполняется внахлест. Верхний лист плавится угольным или же металлическим электродом. При этом используется подкладка из стали.

Отлично, если можно выполнять процедуру сверху вниз. Это позволяет уменьшить глубину проплавления трубы. А значит, и снизить вероятность прожога.

Для соединения тонкостенных труб применяются источники питания, в которых есть плавная регулировка тока на малых значениях. А благодаря увеличенному напряжению холостого хода возбуждение дуги облегчается.

Еще трубы малого диаметра можно соединять на постоянном токе угольным электродом по отбортовке кромок. Присадка не требуется, так как наплавление происходит за счет кромок. Если толщина стенок немного больше, в шов добавляется проволока или полоска, чтобы получить необходимый объем металла в шве.

Газовая сварка также применяется для соединения труб малого диаметра. Однако способ создает деформации изделия. Сварка выполняется в аргоне или в углекислом газе.

Сварка труб малого диаметра

Если необходимо выполнить соединение металла толщиной 1-2 мм, применяется автоматическая или полуавтоматическая сварка под флюсом. Скорость составляет около 110 м/ч. Но наиболее экономичным способом соединения тонких изделий является контактная сварка. Она позволяет создать качественные швы при низких уровнях тепловой деформации.

Подведем итоги

В дополнение можно посмотреть обучающие видео, какой должна быть техника выполнения процесса.

Следует отметить, что окончательный выбор способа сварки труб малого диаметра зависит от назначения и самой конструкции, возможностей и условий выполнения соединения. Тогда шов будет надежным и прочным, несмотря на тонкость стенок изделий.

Источник

7.2. Сварка труб малых диаметров

7.2.1. Настоящий подраздел распространяется на сварку стыков труб поверхностей нагрева котлов, трубопроводов дренажных, фосфатирования, отбора проб, проводок к контрольно-измерительным приборам и средствам автоматизации и других трубопроводов диаметром менее 100 мм при толщине стенки 2-10 мм, изготовленных из углеродистых и низколегированных конструкционных и теплоустойчивых сталей.

Читайте также:  Таблица нагрева пвх труб

7.2.2. Конструкция сварного соединения должна соответствовать типу Тр-1 или Тр-2 (см. табл.6.2).

7.2.3. Марка электродов подбирается поданным табл.4.1.

7.2.4. При сборке и сварке стыков труб малых диаметров необходимо соблюдать следующие требования: стык необходимо собирать в приспособлении и прихватывать в одной или двух точках, распложенных в диаметрально противоположных местах. Если сборочное приспособление позволяет сваривать весь периметр стыка, то прихватки не следует накладывать и корневой слой шва или весь шов нужно выполнять в стыке, зафиксированном в приспособлении;

стык, скрепленный одной прихваткой, нужно сваривать сразу после выполнения прихватки, при этом наложение корневого слоя необходимо начинать на участке, диаметрально противоположном прихватке;

до полного окончания сварки и остывания шва нельзя подвергать стык каким-либо механическим воздействиям;

прихватку и сварку стыков следует производить без предварительного подогрева независимо от марки стали труб;

для прихватки стыков труб с толщиной стенки до 6 мм включительно нужно применять электроды диаметром не более 2,5 мм, с большей толщиной — электроды диаметром не более 3 мм.

Прихватку разрешается производить аргонодуговой сваркой.

Сварочный ток должен быть минимальным, обеспечивающим нормальное ведение сварки и стабильное горение дуги:

Расположение слоев и валиков показано на рис.7.11. Последовательность наложения слоев при сварке вертикального и горизонтального стыков труб поверхностей нагрева должна быть такой же, как при сварке трубопроводов диаметром до 219 мм (см.рис.7.3, аи7.5, а).

«Рис.7.11. Примерное расположение слоев и валиков при сварке вертикального (а) и горизонтального (б) стыков труб малых диаметров»

Стыки труб с толщиной стенки более 2 мм следует сваривать не менее чем в два слоя.

7.2.5. Стыки труб поверхностей нагрева котлов и стыки трубопроводов диаметром 30-83 мм может сваривать один сварщик или одновременно два сварщика.

При укрупнительной сборке блоков котла сварку стыков труб поверхностей нагрева выполняют два сварщика. Они располагаются с противоположных сторон блока, и каждый сваривает свою половину стыка.

Стыки труб поверхностей нагрева, собранных в блоки, могут сваривать два сварщика одним из следующих способов.

Первый способ (рис.7.12). Сварщики выполняют сварку с разрывом в один-два стыка: когда 1-й сварщик заваривает стык 3, 2-й приступает к сварке стыка 1 или 2, который уже заварил 1-й сварщик на своей половине. При сварке вертикальных стыков (рис.7.12, а) 1-й сварщик начинает сварку в точке А и ведет ее в направлении точки Б или Г, заваривая последовательно участки АБ и АГ своей половины стыка 3. 2-й сварщик, отставая от первого на один-два стыка, заваривает участки ГБ и БВ также в направлении снизу вверх (стык 1). При сварке горизонтальных стыков (рис.7.12, б) 1-й сварщик заваривает сразу свою половину стыка на участке БАГ (стык 3), а 2-й с разрывом в один-два стыка заваривает другую половину стыка на участке ГВБ, накладывая шов в том же направлении, что и 1-й сварщик (стык 1). «Замки» участков швов должны быть смещены в соответствии с требованиямип.6.5 3.

«Рис.7.12. Порядок сварки двумя сварщиками вертикальных (а) и горизонтальных (б) стыков труб поверхностей нагрева, собранных в блоки»

Второй способ (рис.7.13). На вертикальном стыке 1-й сварщик начинает сварку в точке А и ведет ее в направлении точки Б, где 2-й сварщик, находящийся с противоположной стороны трубы (блока), как бы перехватывает дугу, зажигая ее на жидкой сварочной ванне, 2-й сварщик заваривает участок БВ, а в это время 1-й накладывает шов на участке АГ того же стыка; в районе точки Г 2-й сварщик вновь перехватывает дугу 1-го и заваривает последний участок ГВ. Горизонтальный стык сваривают по аналогичной схеме, но с той разницей, что «перехват» дуги осуществляется 1 раз (в точке Б или Г), после того как 1-й сварщик заварит сразу половину периметра стыка.

При тесном расположении труб, например в газоплотных панелях из серебренных труб, предпочтительнее применять второй способ.

Читайте также:  Бампер из трубы нивы 21213

7.2.6. Вертикальные стыки труб поверхностей нагрева сваривает один сварщик участками по четверти периметра. Чтобы уменьшить перелом трубы в месте стыка вследствие неравномерной усадки, участки необходимо сваривать в последовательности, указанной на рис.7.14, а цифрами. Горизонтальный стык один сварщик сваривает по схеме, приведенной нарис.7.14, б: наложение шва начинается со стороны, противоположной прихватке; каждый последующий слой накладывается в направлении, противоположном направлению сварки предыдущего слоя, при этом «замки» швов должны быть смещены согласно требованиям, приведенным вп.6.5 3.

«Рис.7.13. Схема сварки двумя сварщиками вертикального стыка труб поверхностей нагрева методом «перехвата» дуги»

«Рис.7.14. Схема сварки одним сварщиком вертикального (а) и горизонтального (б) стыков труб поверхностей нагрева»

7.2.7. При сварке стыков труб поверхностей нагрева котлов, собранных в блоки, а также при приварке труб к штуцерам или непосредственно к коллекторам необходимо в каждом конкретном случае применять в зависимости от конструкции котла такую последовательность сварки, которая позволила бы в процессе сварочных работ проводить контроль сварных стыков и при необходимости их переваривать.

Источник

Сварка прямошовных труб малого и среднего диаметров

Высокочастотная сварка давлением с предварительным нагревом и местным расплавлением свариваемых поверхностей нашла наибольшее применение в производстве прямошовных труб малого и среднего диаметров. В 1975 г. методом высокочастотной сварки в СССР ежедневно изготовлялось более 3 млн. м сварных труб из углеродистых и нержавеющих сталей, сплавов алюминия, меди и титана диаметром от 10 до 530 мм с толщиной стенки от 5 до 10 мм.

Рисунок 1 — Схема агрегата для производства прямошовных труб

Изготовление труб на трубоэлектросварочном агрегате

Принципиальная схема агрегата для высокочастотной сварки прямошовных труб приведена на рис. 1. Лента в рулонах поворотным краном подается на конвейер 1 и разматыватель 2, затем правится в валково машине 3 и после обрезки концов с помощью ножниц 4 сваривается в непрерывную ленту на стыкосварочной машине 5

Оразовавшийся при сварке грат удаляется гратоснимателем Петлеобразователь 6 предназначен для создания запаса ленты перед формовочным станом и обеспечения непрерывного процесса производства труб во время обрезки и сварки концов ленты и снятия грата. Приводными тянущими роликами лента подается к формовочному стану 7. В некоторых случаях перед формовкой кромки ленты обрезаются на дисковых ножницах.

Формовочный стан состоит из горизонтальных и вертикальных клетей. Сформованная трубная заготовка поступает в сварочную машину 8, где производится нагрев кромок и формирование сварного соединения. Наружный грат снимается гратоснимателем резцового типа. Сваренные трубы охлаждаются до температуры 50—60° С в холодильнике 9 водовоздушной смесью, которая подается на поверхность труб через систему сопел. Окончательная калибровка трубы по диаметру осуществляется на стане 10, каждая клеть которого состоит из пары горизонтальных и пары вертикальных валков: горизонтальные — приводные, вертикальные — неприводные.

Продольная кривизна труб устраняется в правильной клети, имеющей две последовательно расположенные четырехвалковые обоймы. В дальнейшем труба поступает или в редукционный стан 12, пройдя нагрев в индукционной печи 11 и резку на летучей пиле 13, или на трубоотрезной станок, а затем на участок отделки 14, 15. При локальной нормализации шва индукционный нагреватель размещается непосредственно после гратоснимателя.

Выбор оптимальных параметров сварочных устройств

Свариваемый сортамент труб ограничивается отношением D/2d. Максимальное значение D/2d определяется условием устойчивости заготовки данного диаметра при осадке с оптимальным давлением, т. е. тонкостенность свариваемой трубной заготовки зависит от свариваемого диаметра и материала заготовки (табл. 28). Максимальное значение толщины стенки при заданном диаметре трубы определяется допустимыми электрическими потерями в ее теле, а при очень малых соотношениях — и возможностями процесса формовки.

Как было показано в гл. I, сварка труб, толщина которых определяется отношением D/2d (табл. 1), может быть осуществлена в широком диапазоне частот тока. Поэтому решающим фактором является простота и надежность конструкции системы передачи тока, зависящей в значительной степени от пропускаемого тока. Чем выше частота и длительнее время нагрева, тем меньше ток (рис. 2).

Снижение сварочного тока за счет увеличения времени нагрева нецелесообразно, так как при этом увеличиваются тепловые потери вследствие отвода тепла в тело свариваемой заготовки. Наиболее эффективно уменьшение тока за счет повышения частоты до 200—500 кГц. Дальнейшее повышение частоты, как правило, нежелательно, так как заметного уменьшения тока это не дает и ухудшаются показатели источников питания сварочных устройств. Поэтому с учетом выделенного в СССР льготного диапазона частот для высокочастотной сварки труб малого и среднего диаметров принята частота 440 кГц, хотя в отдельных случаях применяются частоты 70 и 10 кГц. За рубежом для сварки таких труб применяют частоты 170—500 кГц.

Читайте также:  Группа прочности обсадных труб гост с api

Таблица 1 — Предельные значения отношения D/2d для труб диаметром от 10 до 530 мм

Наружный
диаметр
трубы, мм

из малоуглеродистой стали

из алюминиевых и медных сплавов

Рисунок 2 — Зависимость сварочного тока от частоты и времени нагрева: 1-0.1c, 2-0.2c, 3-0.4c, 4-1c

Рисунок 3 — Зависимость поправочного коэффициента kМ от диаметра свариваемых труб D

Выбор способа подвода тока к свариваемым кромкам также имеет важное значение. Обратимся к графику зависимости коэффициента изменения мощности kM (или приведенной мошности) от диаметра свариваемой трубной заготовки D(рис.3)

Наименьший расход электроэнергии при индукционном подводе тока с помощью охватывающего индуктора наблюдается при сварке труб диаметром 35—45 мм. Если принять мощность, потребляемую при сварке труб диаметром 35—45 мм за единицу, то отношение этой мощности к мощности, необходимой для сварки трубы другого диаметра, даст коэффициент изменения мощности kМ. Необходимо заметить, что при контактной системе подвода тока значение приведенной мощности для сварки труб диаметром 35—45 мм примерно такое же, как при индукционном подводе, и практически не меняется с изменением диаметра трубы. Поэтому при сварке труб малого диаметра следует рекомендовать только систему индукционного подвода тока. С ростом диаметра свариваемой заготовки значительно увеличивается потребляемая мощность, и при диаметре заготовки 220 мм она удваивается по сравнению с мощностью, необходимой для сварки труб диаметром 35—45 мм.

Однако экономичность процесса определяется не только энергетическими показателями. В табл. 29 приведены значения скорости, приведенной мощности и частоты тока при различных способах подвода тока для высокочастотной сварки труб диаметром 159— 220 мм. Из таблицы видно, что при сварке труб диаметром 159 и 168 мм потребляемые мощности при контактном способе с помощью вращающихся контактов и индукционном практически одинаковы, а по данным фирмы «Терматул», для труб диаметром 168 мм можно уменьшить эту мощность на 10—12%, если применить скользящие контакты. Лишь при сварке труб диаметром 219 мм разница в мощностях становится ощутимой

Помимо возможности иметь меньшую длину нагреваемых кромок и меньший расход мощности, система с контактным подводом тока удобна при перестройке стана, связанной с переходом с одного диаметра труб на другой. В то же время этой системе присущи следующие недостатки.

Необходимость симметричной передачи тока к свариваемым кромкам посредством контактов, симметрично расположенных относительно вертикальной плоскости. Периодическое смещение кромок относительно контактов приводит к снижению качества сварного соединения, особенно в непрерывных трубосварочных станах при прохождении через формовочную и сварочную машины стыка полос следующих друг за другом рулонов.

Возможность появления на поверхности трубы локальных оплавленных участков (поджогов), возникающих вследствие образования электрической дуги в момент нарушения контакта. Нарушение контакта происходит при прохождении стыка, дефектах формовки или свариваемой ленты.

Необходимость периодической остановки стана при смене контактных наконечников или проточке вращающихся электродов. По данным Северского трубного завода, среднее время работы вращающихся контактов без проточки — одна рабочая смена, а время проточки электродов — 15—20 мин. При применении контактных систем со скользящими контактами в зависимости от величины передаваемой мощности, качества поверхности трубной заготовки, ее материала стойкость контактных наконечников такова, что можно сварить от 1,5 до 30 тыс. м труб, используя пару наконечников. Время, необходимое для смены пары контактодержателей, — 20 мин. По данным фирмы «Терматул», при использовании сварочного устройства мощностью 280 кВт средняя стойкость контактных наконечников 3000 м, а время, необходимое для их замены, — 10 мин.

Таблица 2. Значения скорости, приведенной мощности и частоты при высокочастотной сварке труб диаметром 159—220 мм

Источник

Adblock
detector