Меню

Относительная гладкость трубы это

Шероховатость стенок трубопровода: типы и влияние

Твердые стенки, ограничивающие поток жидкости, всегда в той или иной степени обладают известной шероховатостью. Шероховатость стенок характеризуется величиной и формой различных, порой самых незначительных по размерам, выступов и неровностей, имеющихся на стенках, и зависит от материала стенок и их обработки.

Шероховатость — это совокупность неровностей поверхности с относительно малыми шагами на базовой длине. Измеряется в микрометрах (мкм).

Содержание статьи

Обычно с течением времени шероховатость изменяется от появления ржавчины, коррозии, отложения осадков и т.д.

Абсолютная шероховатость

В качестве основной характеристики шероховатости служит так называемая абсолютная шероховатость – κ, представляющая собой среднюю величину указанных выступов и неровностей, измеренную в линейных единицах.

Некоторые значения шероховатости стенок трубопровода приведены в таблице ниже

Чистые цельнотянутые из латуни, меди и свинца

Новые цельнотянутые стальные

Стальные с незначительной коррозией

В случае когда величина выступов шероховатости стенки трубы меньше, чем толщина вязкого (ламинарного) подслоя неровности стенки полностью погружены в этот слой.

При этом турбулентная часть потока не будет входить в непосредственное соприкосновение со стенками и движение жидкости, а следовательно, и потери энергии не будут зависеть от шероховатости стенок, а будут зависеть только от свойств самой жидкости.

Если величина выступов такова, что они превышают толщину вязкого подслоя, то неровности стенок будут выступать в турбулентную область, увеличивая беспорядочность движения и существенным образом влиять на величину потерь энергии.

В этом случае каждый отдельный выступ можно сравнить с плохо обтекаемой поверхностью, находящейся в окружающем её потоке жидкости и являющейся источников образования вихрей.

В соответствии с написанным выше поверхности условно разделяют на гидравлически гладкие (первый случай) и шероховатые (второй вариант).

На самом деле, толщина вязкого подслоя непостоянна и уменьшается с увеличением числа Рейнольдса. У гидравлически гладких стенок с возрастанием числа Рейнольдса тоже начинает проявляться шероховатость, так как вязкий подслой становиться тоньше и выступы шероховатости, которые первоначально полностью располагались в этом слое, начинают выходить из него, выступая в турбулентную зону.

Следовательно, одна и та же стенка в зависимости от величины числа Рейнольдса может вести себя по разному:
в одном случае – как гладкая
в другом – как шероховатая.

Поэтому абсолютная шероховатость стенок трубопровода не может полностью характеризовать влияние стенок на движение жидкости. Естественно, что стенки с одной и той же абсолютной шероховатостью в потоках небольших поперечных размеров должны будут вносить большие возмущения в поток жидкости и оказывать большее сопротивление движению, чем в потоках большого сечения.

Относительная шероховатость и относительная гладкость.

Для характеристики влияния шероховатости на величину гидравлических сопротивлений, а так же исходя из условий соблюдения подобия, в гидравлике вводится понятие относительная шероховатость – ε.

Под термином относительная шероховатость понимают безразмерное отношение абсолютной шероховатости к некоторому линейному размеру, характеризующему сечение потока(например, к радиусу трубы r, к глубине жидкости в открытом потоке h и т.п.).

В некоторых случаях вводят понятие относительной гладкости ε / как величины обратной относительной шероховатости

В действительно, как показали исследования, на величину гидравлических сопротивлений влияет не только абсолютное значение шероховатости (высота выступов), но также в значительной степени их форма и густота. Учесть влияние этих факторов непосредственными измерениями шероховатости практически невозможно.

Видео о шероховатости

В настоящее время для того, чтобы охарактеризовать шероховатость стенки трубы при гидравлических расчетах обычно пользуются понятием – эквивалентной шероховатости. Этот эквивалент представляет собой такую величину выступов однородной абсолютной шероховатости, которая дает при подсчетах одинаковую с действительной шероховатостью величину потерь напора.

Источник

От чего зависит шероховатость труб

Шероховатость стенок трубопровода: типы и влияние

Твердые стенки, ограничивающие поток жидкости, всегда в той или иной степени обладают известной шероховатостью. Шероховатость стенок характеризуется величиной и формой различных, порой самых незначительных по размерам, выступов и неровностей, имеющихся на стенках, и зависит от материала стенок и их обработки.

Шероховатость — это совокупность неровностей поверхности с относительно малыми шагами на базовой длине. Измеряется в микрометрах (мкм).

Содержание статьи

Обычно с течением времени шероховатость изменяется от появления ржавчины, коррозии, отложения осадков и т.д.

Абсолютная шероховатость

В качестве основной характеристики шероховатости служит так называемая абсолютная шероховатость – κ, представляющая собой среднюю величину указанных выступов и неровностей, измеренную в линейных единицах.

Некоторые значения шероховатости стенок трубопровода приведены в таблице ниже

Чистые цельнотянутые из латуни, меди и свинца

Новые цельнотянутые стальные

Стальные с незначительной коррозией

В случае когда величина выступов шероховатости стенки трубы меньше, чем толщина вязкого (ламинарного) подслоя неровности стенки полностью погружены в этот слой.

При этом турбулентная часть потока не будет входить в непосредственное соприкосновение со стенками и движение жидкости, а следовательно, и потери энергии не будут зависеть от шероховатости стенок, а будут зависеть только от свойств самой жидкости.

Если величина выступов такова, что они превышают толщину вязкого подслоя, то неровности стенок будут выступать в турбулентную область, увеличивая беспорядочность движения и существенным образом влиять на величину потерь энергии.

В этом случае каждый отдельный выступ можно сравнить с плохо обтекаемой поверхностью, находящейся в окружающем её потоке жидкости и являющейся источников образования вихрей.

В соответствии с написанным выше поверхности условно разделяют на гидравлически гладкие (первый случай) и шероховатые (второй вариант).

На самом деле, толщина вязкого подслоя непостоянна и уменьшается с увеличением числа Рейнольдса. У гидравлически гладких стенок с возрастанием числа Рейнольдса тоже начинает проявляться шероховатость, так как вязкий подслой становиться тоньше и выступы шероховатости, которые первоначально полностью располагались в этом слое, начинают выходить из него, выступая в турбулентную зону.

Следовательно, одна и та же стенка в зависимости от величины числа Рейнольдса может вести себя по разному:
в одном случае – как гладкая
в другом – как шероховатая.

Поэтому абсолютная шероховатость стенок трубопровода не может полностью характеризовать влияние стенок на движение жидкости. Естественно, что стенки с одной и той же абсолютной шероховатостью в потоках небольших поперечных размеров должны будут вносить большие возмущения в поток жидкости и оказывать большее сопротивление движению, чем в потоках большого сечения.

Относительная шероховатость и относительная гладкость.

Для характеристики влияния шероховатости на величину гидравлических сопротивлений, а так же исходя из условий соблюдения подобия, в гидравлике вводится понятие относительная шероховатость – ε.

Под термином относительная шероховатость понимают безразмерное отношение абсолютной шероховатости к некоторому линейному размеру, характеризующему сечение потока(например, к радиусу трубы r, к глубине жидкости в открытом потоке h и т.п.).

Читайте также:  Труба в трубе паропровод

В некоторых случаях вводят понятие относительной гладкости ε / как величины обратной относительной шероховатости

В действительно, как показали исследования, на величину гидравлических сопротивлений влияет не только абсолютное значение шероховатости (высота выступов), но также в значительной степени их форма и густота. Учесть влияние этих факторов непосредственными измерениями шероховатости практически невозможно.

Видео о шероховатости

В настоящее время для того, чтобы охарактеризовать шероховатость стенки трубы при гидравлических расчетах обычно пользуются понятием – эквивалентной шероховатости. Этот эквивалент представляет собой такую величину выступов однородной абсолютной шероховатости, которая дает при подсчетах одинаковую с действительной шероховатостью величину потерь напора.

Влияние шероховатости труб на напор воды

Как поведет себя жидкость в турбулентном потоке, зависит от того, каким является коэффициент шероховатости стальных труб. Различные неровности на внутренней поверхности отражаются на характеристиках коллекторов, их пропускной способности и происходящих внутри процессах. Как и почему это происходит, расскажет данная статья.

Виды шероховатостей в гидравлике

Течение жидкости в ламинарном режиме происходит медленно и плавно, и она спокойно обтекает на своем пути небольшие препятствия. Местное сопротивление в этом случае настолько незначительное, что его величиной можно пренебречь.

На заметку! Турбулентным движением называется движение газа, жидкости или воздуха, при котором кроме средней скорости общего потока, частицы вещества имеют добавочную скорость. Ее направление может не совпадать с направлением средней скорости.

При турбулентном потоке даже мелкие препятствия могут стать источником вихревого движения жидкостей. Они приводят к возрастанию точечных гидравлических сопротивлений, которые в ламинарном потоке настолько малы, что не заслуживают внимания. Препятствиями в данном случае считаются царапины, заусеницы, бугорки и т.п. на стенках трубопровода. В гидравлике они называются выступами шероховатости.

Проблема данного вида может быть абсолютной или относительной:

  1. Абсолютная шероховатость труб зависит от средней высоты бугорков, которые располагаются на внутренних стенках магистрали. Здесь имеет значение качество изготовления, условия эксплуатации и материал конструкции. Данный показатель не оказывает влияния на потерю напора, поскольку не связан с поперечными размерами потока.
  1. Относительная шероховатость труб – это отношение величины абсолютной шероховатости к диаметру трубопровода. Этот показатель сказывается на величине потери напора.

Помимо двух основных видов существует также понятие эквивалентной шероховатости стальных труб, которая искусственно создается бугорками одинаковой высоты по всей длине трубопровода. При ее определении диаметр зерен подбирается так, чтобы в местах квадратичного сопротивления коэффициент по величине был равен коэффициенту при естественной неровности внутренней поверхности сетей.

На заметку! Данный показатель определяется экспериментально, берется из справочных таблиц или вычисляется по приближенной формуле. Как он сказывается на величине гидравлического сопротивления, зависит от диаметра коллектора.

Гидравлически гладкие и шероховатые трубы

У поверхности трубы с внутренней стороны существует относительно статичный слой, рядом с которым все скорости равняются нулю. Этот подвязкий слой называют ламинарным. Если сравнивать с основным потоком, он очень тонкий, но именно из-за него происходят потери напора или удельной энергии.

В случае, когда бугорки на поверхности профиля по высоте меньше толщины ламинарной пленки, они не оказывают влияния на характер движения жидкости. Напор в этом случае может уменьшаться по другим причинам, и такие трубы имеют название – гидравлически гладкие.

Когда высота выступающих зерен больше толщины ламинарной пленки, то напор теряется по причине неровностей внутренней поверхности. Такие конструкции называются гидравлически шероховатыми.

Шероховатость труб из разных материалов

Гидравлические потоки имеют свои особенности, и их следует учитывать при выборе и проектировании транспортирующих магистралей.

Расчет трубопроводов с применением полиэтиленовых труб. Технологии работы с ПЭ-трубами

Как определить коэффициент шероховатости труб

Рисунок 415. Шероховатость и зарастание трубопровода

Пропускная способность трубопроводов в период эксплуатации снижается, вследствие коррозии и образования отложений на трубах. При этом происходит изменение шероховатости трубопровода и его зарастание (уменьшение поперечного сечения). Увеличение шероховатости и зарастание приводит к уменьшению диаметра трубопровода и как следствие к увеличению потерь напора. Меньше всего этому явлению подвержены асбоцементные, стеклянные и пластмассовые трубы. Сложность физических, химических и биологических явлений, определяющих изменение шероховатости труб и их зарастание, приводит к необходимости ориентироваться на некоторые средние показатели, которые в первом приближении можно оценить по формуле [5]:

Рисунок 416. (19)

— коэффициент эквивалентной шероховатости для новых труб в начале эксплуатации, мм; — коэффициент эквивалентной шероховатости через
t лет эксплуатации, мм; — ежегодный прирост абсолютной шероховатости, мм в год, зависящий от физико-химических свойств подаваемой по ним воды.
По А.Г. Камерштейну, природные воды разбиваются на пять групп, каждая из которых определяет характер и интенсивность снижения пропускной способности трубопровода:

Коррозионное

воздействие

Зарастание трубопровода можно измерять при выполнении реконструкции трубопроводов или ежегодных ремонтах при помощи обычной линейки (рисунок выше), а увеличение шероховатости определять по выше изложенной методике.

Значения коэффициента эквивалентной шероховатости для новых труб приведены в таблице ниже.

Тип трубы Состояние трубы Коэффициент эквивалентной шероховатости трубы, мм Среднее значение коэффициента эквивалентной шероховатости трубы, мм
Бесшовные стальные трубы Новые и чистые 0.01 – 0.02 0.014
Стальные сварные трубы Новые и чистые 0.03 – 0.1 0.06
Чугунные трубы Новые асфальтированные 0 – 0.16 0.12
Чугунные трубы Новые без покрытия 0.2 – 0.5 0.3
Асбестоцементные Новые 0.05 – 0.1 0.085
Железобетонные Новые виброгидропрессованные 0 – 0.05 0.03
Железобетонные Новые центрифугированные 0.15 – 0.3 0.2
Пластмассовые Новые, технически гладкие 0 – 0.002 0.001
Стеклянные Новые, технически гладкие 0 – 0.002 0.001
Алюминиевые Новые, технически гладкие 0 – 0.002 0.001

Общие потери в трубопроводе, с учетом потерь в местных сопротивлениях могут быть определены по формуле:

Гидравлически гладкие и шероховатые трубы

В зависимости от соотношения абсолютной высоты выступов шероховатости Δ и толщины вязкого подслоя δ по-разному проявляется влияние вязкостного трения и сил инерции на касательные напряжения и потери энергии в потоке. Толщина вязкого подслоя определяется

Это значение δ следует сравнить с высотой выступов шероховатости. Так как фактическая высота всех выступов не является одинаковой, то вводится понятие эквивалентной шероховатости Δэкв, т.е. такой равномерной шероховатости, которая дает при подсчете одинаковую с заданной шероховатостью величину гидравлического коэффициента трения λ. (Некоторые значения эквивалентной шеро­ховатости приведены в табл. 111.1).

Таблица – Значения эквивалентной шероховатости

Трубы Δэкв, мм
Стальные цельнотянутые новые 0,02—0,05
То же, неновые (бывшие в эксплуатации) 0,15—0,3
Стальные сварные новые 0,04—0,1
Чугунные новые 0,25—1
Чугунные и стальные сварные неновые 0,8—1,5
Асбестоцементные новые 0,05-0,1
То же, неновые 0,6
Бетонные и железобетонные 0,3—0,8
Читайте также:  Наконечник для забивки труб

Схематично можно рассматривать следующие три области гид­равлических сопротивлений

1. Область гидравлически гладких труб: выступы шероховатости покрыты вязким подслоем (Δэкв ‹ δ) и не нарушают целостности последнего. Выступы обтекаются без отрывов и вихреобразований. В этом случае шероховатость не влияет на гидравлические сопротивления и гидравлический коэффициент трения, который зависит только от числа Рейнольдса. По данным А. Д. Альтшуля, эта область существует при

Для гидравлически гладких труб наибольшее распространение получила формула Блазиуса

С учетом зависимости и того, что, легко убедиться, что потери напора для гидравлически гладких труб пропорциональны скорости в степени 1,75.

kгл – коэффициент пропорциональности.

2. При > 500 имеет место область гидравлически шероховатых труб: выступы шероховатости выходят за пределы вязкого подслоя (Δэкв>δ). Отрывное обтекание выступов сводит сопротивление трения к сопротивлению обтекания тел с резким изменением конфигурации, которое не зависит от числа Рейнольдса и пропорционально скоростному напору потока и размерам выступов шероховатости. Именно эти факторы связаны с инерционными сопротивлениями перемешивающихся частиц жидкости.

В переходной области сопротивлений гидравлический коэффициент трения может быть определен по формуле А. Д. Альтшуля

3. При 10

Для гидравлически шероховатых труб формула превращается в формулу Шифринсона

Так как в последнем случае коэффициент гидравлического трения не зависит от скорости движения воды, то из формулы следует, что потери напора пропорциональны квадрату скорости

Гидравлический коэффициент трения (коэффициент Дарси)

Исходя из вышеизложенного, с учетом данных экспериментальных исследований, в общем виде гидравлический коэффициент трения зависит от числа Рейнольдса и относительной шероховатости трубы, т. е.

Одной из наиболее известных работ в этой области являются исследования И. Никурадзе, представленные в виде графика на рис.

На графике показано, что при ламинарном режиме λ зависит только от числа Рейнольдса. При значениях Re = 2320-4000 в зоне периодической смены режимов λ быстро растет. В области гидравлически гладких труб λ зависит только от числа Рейнольдса, уменьшаясь с увеличением последнего.

В переходной области на графике показано семейство кривых для разных относительных шероховатостей. В этой области значения λ в общем возрастают с ростом числа Рейнольдса Rе, но для малых шероховатостей на начальном участке имеет место спад. В области гидравлически шероховатых труб коэффициент λ представлен семейством горизонтальных прямых, разных для различных шероховатостей.

Необходимо отметить, что опыты И. Никурадзе проводились в трубах с искусственной равномерной шероховатостью, наклеенной на стенки трубы в виде песчинок одинаковой крупности. Для практических целей важны результаты опытов К. Кольбрука, Г. А. Мурина, Ф. А. Шевелева и других ученых, проведенные для промышленных труб с естественной неравномерной шероховатостью. Обобщенные результаты этих исследований представлены на графике (рис.), который в отличие от графика Никурадзе показывает, что в переходной области значения λ получаются больше, чем в области квадратичной.

Это важное положение необходимо учитывать при расчете труб, работающих в переходной области. Следует также отметить, что каждая труба не является однозначно гладкой или шероховатой. В зависимости от числа Рейнольдса одна и та же труба может работать в области гидравлически гладких, шероховатых труб или в переходной области. В трубах со сравнительно большой шероховатостью при переходе к турбулентному режиму вязкий подслой не покрывает выступы шероховатости, и область гидравлически гладких труб отсутствует. В зависимости от особенности каждой области имеются различные эмпирические формулы для определения гидравлического коэффициента трения.

Формула Альтшуля применима для всех областей сопротивлений. При малых числах Рейнольдса величина значительно меньше величины и ею можно пренебречь. В этом случае формула превращается в формулу Блазиуса. При больших числах Rе величиной можно пренебречь по сравнению и эта формула превращается в формулу Шифринсона.

Для ряда частных случаев движения жидкости имеются отдельные эмпирические формулы для гидравлического коэффициента трения. Асбестоцементные трубы обычно работают в переходной области сопротивления. Неновые стальные и чугунные трубы при скоростях движения воды V 1,2 м/с — в области гидравлически шероховатых труб. Ф. А. Шевелевым составлены таблицы по определению потерь напора в водопроводных трубах на основании эмпирических формул.

Для расчета движения сточных вод в водоотводных (канализационных) напорных и безнапорных трубах применяется формула Н. Ф. Федорова

D = 4R – гидравлический диаметр;

?2 и a2 – эквивалентная абсолютная шероховатость и безразмерный коэффициент, опреде­ляемые по таблице;

Re – число Рейнольдса, при опре­делении которого кинематическая вязкость сточных вод принима­ется в зависимости от количества взвешенных частиц в них на 5-30% больше, чем вязкость чистой воды.

Таб Коэффициенты ?2 и a2 для формулы Н. Ф. Федорова

Значения гидравлического коэффициента трения для сточных вод получаются большими, чем при движении чистой воды в водо­проводных трубах. Н. Ф. Федоровым составлены на основании формулы таблицы пропускной способности и скорости протекания жидкости в водоотводных трубах.

h t = λ(L/d)(v 2 /2g).

  • где L –длина трубопровода.
  • d -диаметр участка трубопровода.
  • v — средняя скорость перемещения жидкости.
  • λ -коэффициент гидравлического сопротивления, который в общем случае зависит от числа Рейнольдса (Re=v*d/ν), и относительной эквивалентной шероховатости труб (Δ/d).

Значения эквивалентной шероховатости Δ внутренней поверхности труб разных типов и видов указаны в таблице 2. А зависимости коэффициента гидравлического сопротивления λ от числа Re и относительной шероховатости Δ/d указаны в таблице 3.

В случае, когда режим движения ламинарный, то для труб некруглого сечения коэффициент гидравлического сопротивления λ находится по персональным для каждого отдельного случая формулам (табл. 4).

Если турбулентное течение развито и функционирует с достаточной степенью точности, то при определении λ можно использовать формулы для круглой трубы с заменой диаметра d на 4 гидравлических радиуса потока Rг (d=4Rг)

Материал

В наибольшей степени свойства любого предмета определяются тем, из чего он сделан. Полиэтиленовые трубы не исключение.

Полиэтиленовые трубы не боятся ни света, ни непогоды

А сделаны они из материала, который является самым распространенным из существующих пластиков.

Его физические свойства таковы:

  • Полиэтилен не вступает в реакцию с кислотами, щелочами и спиртами. Зато его могут разрушить жидкие хлор и фтор. Впрочем, бдительному владельцу полиэтиленового водопровода это обычно не грозит: вероятность встретить фтор и хлор в свободном состоянии куда меньше, чем вероятность встретить в уборной автовокзала Жмеринки британскую королеву.
  • Полиэтилен несколько легче воды. Его плотность примерно 0,94-0,96 г/см3. Заметьте: тот факт, что он не тонет в воде, не характеризует его с плохой стороны. Это всего лишь легкий пластик. Вес полиэтиленовой трубы малого и среднего диаметра покажется посильным даже человеку, далекому от мирового рекорда в силовом троеборье.
  • Размягчаться и утрачивать начальную форму полиэтилен начинает при температуре 80 С.
  • Он боится света. В естественных условиях полимеризованный этилен примерно за год превращается в пыль. Не спешите оплакивать свою новую канистру: чтобы этого не произошло, промышленность использует специальные модификаторы, делающие полиэтилен почти вечным. Экологи в этом месте рыдают.
Читайте также:  Как делают сэндвич трубы для дымохода

Насколько было бы чище вокруг, если бы весь полиэтилен разлагался за год…

  • Наконец, полиэтилен крайне эластичен. Его максимальное растяжение при разрыве достигает 600 процентов, а раз так — образовавшаяся ледяная пробка не разорвет полиэтиленовую трубу, лишь немного растянет. Это делает, кстати, полиэтиленовые трубы наряду с неармированным полипропиленом идеальным выбором для водопровода загородного дома.

ЧИТАТЬ ТАКЖЕ: Труба ПНД: что это за труба, назначение, ассортимент и технические характеристики, соответствие диаметров труб ПНД и стальных

Полиэтилену это не грозит

Совет: все-таки ввод в дом желательно заглубить ниже точки промерзания грунта. Если внутренний водопровод отогреется, едва температура в помещении поднимется выше нуля, то отогревать пластиковую трубу в сугробах при -30 на улице — удовольствие то еще.

Кроме того, на время зимнего отсутствия воду из труб желательно сбросить еще по одной причине: трубам лед не страшен, а вот смесители он порвет.

h м = ζ v 2 /2g.

  • где ζ – коэффициент местного сопротивления, который зависит от конфигурации местного сопротивления и числа Рейнольдса.

При развитом турбулентном режиме ζ = const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления Lэкв. т.е. такой длины прямого трубопровода, для которого ht = hм. В данном случае потери напора в местных сопротивлениях учитываются тем, что к фактической длине трубопровода добавляется сумма их эквивалентных длин

  • где Lпр – приведенная длина трубопровода.

Зависимость потерь напора h1-2 от расхода называется характеристикой трубопровода.

В случаях когда движение жидкости в трубопроводе обеспечивает центробежный насос, то для определения расхода в системе насос – трубопровод выстраивается характеристика трубопровода h =h(Q) с учетом разности отметок ∆z (h1-2 + ∆z при z1 z2) накладывается на напорную характеристику насоса H=H(Q), которая приведена в паспортных данных насоса (смотреть рисунок). Точка пересечения таких кривых указывает на максимально возможный расход в системе.

Параметры полипропиленовых труб: морозостойкость, срок службы, шероховатость

За последние десять лет полипропиленовые трубы стали пользоваться популярностью, как у профессиональных строителей, так и у тех людей, кто занимается обустройством своей квартиры или загородного дома. Отправляясь за покупкой, многие столкнулись с проблемой выбора изделия, так как труб из полипропилена на рынке предлагают очень много. Но, прежде всего, параметры полипропиленовых труб должны соответствовать параметрам вашей инженерной системы.

Срок службы

1. Срок службы полипропиленовых труб составляет 50 лет в системе холодного водоснабжения. В отопительной системе, а также в системе горячего водоснабжения они прослужат 25 лет, сохраняя при этом все свои изначальные характеристики.

2. Нужно знать, что максимальный срок эксплуатации труб из полипропилена зависит от правильной комбинации двух важных факторов: давления и температуры. При высокой температуре и маленьком давлении или же все наоборот, трубы могут служить долго. Это даже указывается в специальных таблицах. Но если и давление, и температура будут большими, то трубы прослужат недолго.

3. Что же сделать, чтобы трубы прослужили как можно дольше? Чтобы срок службы был максимальным, то есть, 50 лет должна быть температура не больше 60-75 градусов или же давление не больше 4-6 атмосфер. Вообще то, труба из полипропилена прослужит столько, сколько она сможет выдержать без разрушений с учетом коэффициента надежности воздействия постоянной на нее температуры и давления. И если соблюдать все эксплуатационные параметры, которые указываются в строительных нормах, трубы из полипропилена прослужат долго.

Полипропиленовые трубы и мороз

Полипропиленовые трубы могут использоваться при температуре до 40 градусов мороза. Морозостойкость у них высокая. При морозе они не потрескаются и зимой не разморозятся даже на небольшой глубине закапывания. Даже если в трубах замерзнет вода, они не разрушаются, а только немного увеличатся в размере, при оттаивании они становятся прежнего размера. Единственное, что нужно опасаться – это внешнего большого давление на трубу, так она может лопнуть. Несмотря на нормы температуры, температура горячей воды в отопительной системе может в некоторых регионах превысить указанные 95 градусов. В первую очередь это относится к регионам с резко континентальным климатом: Якутии, Дальнему Востоку и Сибири. Если температура будет 52 градуса мороза, то для обогрева зданий при такой высокой температуре воду в теплотрассах приходится нагревать намного выше точки кипения. И при этом полипропиленовые трубы могут пострадать. Поэтому вывод один: трубы из полипропилена можно смело использовать в отоплении и системе водоснабжения везде, кроме самых холодных регионов.

Также читайте: Установка полипропиленовых труб

Шероховатость и диаметр

1. При проектировании напорной трубопроводной системы важное значение имеют ее гидравлические расчеты. По ним вычисляют диаметр труб и подбирают насосное оборудование, обеспечивающее нужный режим работы вышеуказанной системы за весь срок эксплуатации.

2. У полипропиленовых труб довольно гладкая внутренняя поверхность и маленькие гидравлические потери. Это позволяет использовать в монтаже трубы из полипропилена меньшего диаметра, чем стальные. Монтаж оказывается более экономичным и компактным.

3. Коэффициент шероховатости эквивалентной у полипропиленовых труб составляет 0,003-0,005 мм. У новых стальных труб – 0,2 мм. Поэтому становится понятно, почему при замене стальной трубы на полипропиленовую выбирают трубу с меньшим диаметром.

10.1. Абсолютная и относительная шероховатость

На потери напора по длине при турбулентном режиме может оказывать влияние шероховатость стенок. Под шероховатостью будем понимать присутствие у любой поверхности неровностей (выступы и впадины). При заводском изготовлении труб шероховатость их внутренних стенок носит нерегулярный характер, как по высоте, так и по расположению, и поэтому одним параметром охарактеризована быть не может. Несмотря на это, в технических расчетах выбирают единственный параметр, а именно среднюю высоту выступов шероховатости; ее обозначают k

Абсолютной шероховатостью
kназывают среднюю высоту выступов шероховатости.
Опыты показали, что при одной и той же величине абсолютной шероховатости влияние ее на величину гидравлического сопротивления различно в зависимости от диаметра трубы. Поэтому вводится величина относительной шероховатости


.

Относительной шероховатостью называется отношение абсолютной шероховатости к диаметру трубы, т.е.


.

Источник

Adblock
detector