Меню

Окуляр зрительной трубы нивелира

Зрительная труба

Зрительные трубы делятся на:

  • астрономические (обратного изображения);
  • прямого изображения;
  • автоколлимационные.

В геодезических инструментах, предназначенных для наблюдения удаленных предметов, пользуются астрономической трубой. Она состоит из двух собирательных линз, заключенных в цилиндрическую трубу. Одна линза, обращенная к объекту наблюдения, называется объективом, а другая, в которую смотрит глаз наблюдателя, окуляром.

Зрительные трубы бывают с внутренней и внешней фокусировкой. Если фокусировка внутренняя, то внутри трубы помещена рассеивающая линза, с помощью которой можно получить изображение в одной плоскости и этим не менять расстояние между объективом и окуляром. Трубы с внешней фокусировкой состоят из 2-х частей: объективной и окулярной. Последняя с помощью зубчатки, называемой кремальерой может перемещаться и этим достигается изображение предмета. Ход лучей в трубе с внешней фокусировкой – на рисунке: М – объектив. N – окуляр, АВ — рассматриваемый предмет, от которого в трубу идут отраженные лучи. Рассмотрим только два луча, исходящие из точки А: один проходит через оптический центр объектива О, а другой – через главный фокус F. Оба они пересекаются по другую сторону объектива в точке A. Аналогично этому лучи, исходящие из точки В, дадут изображение в точке в. Предмет АВ изображается величиной AB. Это будет действительное обратное и уменьшенное изображение. Полученное в фокальной плоскости трубы изображение рассматривается через окуляр, действующий как лупа. Тогда глаз видит изображение размером АВ.

LL – объектив с фокусным расстоянием F и окуляр ℓℓ с фокусным расстоянием f. Действительное, обратное изображение предмета АВ получают от объектива за его главным фокусом F. Окуляр устанавливается таким образом, чтобы его главный фокус f оказался впереди изображения ав (точки F и f почти совпадают). Тогда перед окуляром получается обратное изображение а’в’, оно увеличенное, но мнимое и находится на расстоянии N наилучшего зрения от глаза. В плоскости ав помещается сетка нитей.

При визировании на бесконечность изображение удаленной цели строится в общей фокальной плоскости объектива и окуляра – задний фокус объектива будет совпадать с передним фокусом окуляра. Такая оптическая система называется телескопической.

В современных теодолитах применяют трубы только с внутренней фокусировкой, обладающими следующими преимуществами: постоянство длины трубы, малые размеры. Объектив и фокусирующая линза образуют телеобъектив. При фокусировании линза изменяет свое положение относительно объектива.

Изображение предмета проецируется на плоскопараллельную пластинку с нанесенной на ней сеткой нитей.

Оптические качества зрительной трубы:

  • увеличение трубы;
  • поле зрения трубы;
  • яркость трубы.

Увеличение трубы

Увеличением зрительной трубы называют отношение угла, под которым предмет виден в трубу, к углу, под которым виден тот же предмет невооруженным глазом.

Допустим, что глаз рассматривает изображение предмета в трубе из центра окуляра О1 под углом β, а предмет – из центра объектива О под углом α.

При наблюдении на большие расстояния можно считать, что изображение предмета в трубе удалено как от объектива, так и от окуляра на величину их фокусных расстояний, то есть можно записать ОС=Fоб., а О1С=fок.. Из ∆аО1в и аОв имеем:

Читайте также:  Размеры советских пластиковых канализационных труб

По малости углов α и β – V=β:α=Fоб.:fок..

Увеличение трубы есть отношение фокусного расстояния объектива к фокусному расстоянию окуляра. Его можно определить в полевых условиях. На расстоянии 20 – 30 метров от прибора устанавливают рейку. Число делений рейки, видимых простым глазом, соответствующее одному делению рейки, видимому в трубу, дает увеличение трубы.

В приборах средней, высокой и наивысшей точности увеличение зрительных труб доходит до 60 крат. Кроме того, увеличение одной и той же зрительной трубы можно изменять путем изменения фокусного расстояния окуляра. Поэтому некоторые приборы комплектуются несколькими сменными окулярами с различными фокусными расстояниями.

Значения увеличения зрительной трубы указывается в паспорте на прибор. При отсутствии паспорта увеличение приходится определять экспериментально. Для этого используется несколько способов.

Поле зрения трубы

Полем зрения трубы называется пространство, видимое в трубу. Оно ограничивается круглым отверстием полевой диафрагмы (сетки нитей) и в пространстве предметов имеет вид конуса, образованного крайними главными лучами.

В геодезических приборах в фокальной плоскости трубы помещается диафрагма, которая не пропускает лучи, падающие на объектив под большим углом. В глаз наблюдателя попадут только те лучи, которые будут находится в пределах конуса аОв, основанием которого является отверстие диафрагмы, а вершина находится в оптическом центре объектива О. Измеряется поле зрения углом α, вершина которого лежит в оптическом центре.

Различают два поля зрения: объективное (истинное) и окулярное (субъективное, кажущееся). Они характеризуются соответственно углами 2u и 2u‘, под которыми мы видим диафрагму MN через объектив и через окуляр.

Отсюда видно, что объективное (истинное) поле зрения прямо пропорционально окулярному (субъективному) полю зрения и обратно пропорционально увеличению трубы.

Окулярное поле зрения зависит от оптической системы окуляра и может достигать 2u‘=60°.

Яркость трубы

Труба характеризуется субъективной яркостью, т.е. отношением освещенности изображения на сетчатке глаза при рассматривании предмета в трубу к освещенности изображения того же предмета на сетчатке при рассматривании его невооруженным глазом. Освещенность изображения на сетчатке глаза зависит от освещенности предмета и площади зрачка глаза, если предмет рассматривается невооруженным глазом, и площади зрачка выхода, если предмет рассматривается в трубу. Площади зрачков пропорциональны квадратам их диаметров, поэтому яркость трубы определяется по формуле:

Источник

Описание и общая схема нивелира

Лабораторная работа № 3

Выполнил: ст. гр. 12-ТВ-1

Проверил: ст. преп.

Работа с нивелиром

Цель работы:изучение основных углов прибора, степени пригодности и основных видов измерения точности нивелира. Изучить и выполнить поверки нивелира.

Задание: изучить устройство нивелира, показать схематический вид его частей, показать оптическую схему теодолита, показать схематический вид осей теодолита, изобразить поле зрения отсчетного микроскопа с указанием отсчета; выполнить комплекс поверок и сделать по измерительным результатам аргументированный вывод.

Нивелир – геодезический прибор, предназначенный для определения разности высот двух точек при помощи горизонтального луча и нивелирных реек, вертикально установленных в этих точках.

По классу точности нивелиры разделяют на: высокоточные Н-05; точные Н-3 и технические Н-10. Числа в шифре нивелира означают допустимую среднюю квадратическую погрешность, получаемую при нивелировании на 1 км двойного хода. Числа, стоящие впереди Н, — номера последующих моделей (3Н-3КЛ).

Читайте также:  Трубы стальные калиброванные гост

Нивелиры всех типов в зависимости от устройства, применяемого для приведения луча визирования в горизонтальное положение, выпускают в двух исполнениях: с уровнем при зрительной трубе (уровненные) и с компенсатором углов наклона (компенсационные). При наличии компенсатора к шифру нивелира добавляется индекс К, например Н-3К. Нивелиры типов Н-3 и Н-10 допускается изготовлять с лимбом для измерения горизонтальных углов с точность до 5΄. При наличии лимба к шифру нивелира добавляется индекс Л, например 2Н-10КЛ.

Нивелир Н-3 относится к точным нивелирам, увеличение зрительной трубы – 31,5х, наименьшее расстояние визирования – 1 м, цена деления уровней: круглого — 10΄, контактного цилиндрического — 15΄΄. Прибор предназначен для нивелирования III и IV классов, а также для инженерно-геодезических работ при изысканиях и в строительстве.

Описание и общая схема нивелира

а – вид со стороны круглого уровня;

б – вид со стороны цилиндрического уровня;

в – вид со стороны окуляра зрительной трубы без предохранительного колпачка:

5 – корпус зрительной трубы;

10 – окуляр с диоптрийным кольцом;

11 – контактный цилиндрический уровень;

12 – юстировочные винты цилиндрического уровня;

15 – металлическая пластина;

16 – крепежные винты сетки нитей.

Нивелир крепят к штативу с помощью станового винта и пружинящей пластины. В отвесное положение ось вращения нивелира устанавливают по круглому уровню 3 с помощью подъемных винтов 1, винтовая нарезка которых входит в гнезда подставки (трегера) 7. Для приближенного наведения трубы на рейку служит мушка над объективом зрительной трубы нивелира, для точного — наводящий винт 6, который работает, когда труба зафиксирована закрепительным винтом 8. Винт кремальеры 4 служит для фокусировки трубы, а резкость изображения сетки нитей достигается вращением диоптрийного кольца окуляра 10. Перед каждым отсчетом по рейке визирную ось нивелира устанавливают в горизонтальное положение элевационным винтом 2. Изображения половинок концов пузырька контактного цилиндрического уровня 11 через систему призм передаются в поле зрения трубы. Если центр пузырька уровня совместить с нуль-пунктом ампулы, то произойдет оптический контакт — изображения половинок концов пузырька уровня будут равными по длине и образуют в верхней части один овал. При наклоне оси уровня контакт нарушается.

Оптическая схема нивелира Н-3

1 – объектив; 2 – фокусирующая линза; 3 – сетка нитей; 4 – окуляр; 5 – ампула уровня; 6 – пузырек цилиндрического уровня; 7 – блок из двух сфеноидов типа БМ-90΄΄; 8 – призма АР-90⁰; 10 – микрообъектив; 9 и 11 – ромб призмы БС-0⁰

Поле зрительной трубы нивелира

Поле зрения зрительной трубы нивелира Н-3 при положениях пузырька цилиндрического уровня вне нуль-пункта (а,б) и в нуль-пункте (в).

Поверки нивелира Н-3

В нивелире должны соблюдаться соответствующие геометрические и оптико-механические условия. Поэтому перед работой нивелир проверяют (делают поверки). Если будут обнаружены нарушения этих условий, нивелир исправляют (выполняют юстировку).

Лабораторная работа № 3

Выполнил: ст. гр. 12-ТВ-1

Читайте также:  Веранда с опорами из труб

Проверил: ст. преп.

Работа с нивелиром

Цель работы:изучение основных углов прибора, степени пригодности и основных видов измерения точности нивелира. Изучить и выполнить поверки нивелира.

Задание: изучить устройство нивелира, показать схематический вид его частей, показать оптическую схему теодолита, показать схематический вид осей теодолита, изобразить поле зрения отсчетного микроскопа с указанием отсчета; выполнить комплекс поверок и сделать по измерительным результатам аргументированный вывод.

Нивелир – геодезический прибор, предназначенный для определения разности высот двух точек при помощи горизонтального луча и нивелирных реек, вертикально установленных в этих точках.

По классу точности нивелиры разделяют на: высокоточные Н-05; точные Н-3 и технические Н-10. Числа в шифре нивелира означают допустимую среднюю квадратическую погрешность, получаемую при нивелировании на 1 км двойного хода. Числа, стоящие впереди Н, — номера последующих моделей (3Н-3КЛ).

Нивелиры всех типов в зависимости от устройства, применяемого для приведения луча визирования в горизонтальное положение, выпускают в двух исполнениях: с уровнем при зрительной трубе (уровненные) и с компенсатором углов наклона (компенсационные). При наличии компенсатора к шифру нивелира добавляется индекс К, например Н-3К. Нивелиры типов Н-3 и Н-10 допускается изготовлять с лимбом для измерения горизонтальных углов с точность до 5΄. При наличии лимба к шифру нивелира добавляется индекс Л, например 2Н-10КЛ.

Нивелир Н-3 относится к точным нивелирам, увеличение зрительной трубы – 31,5х, наименьшее расстояние визирования – 1 м, цена деления уровней: круглого — 10΄, контактного цилиндрического — 15΄΄. Прибор предназначен для нивелирования III и IV классов, а также для инженерно-геодезических работ при изысканиях и в строительстве.

Описание и общая схема нивелира

а – вид со стороны круглого уровня;

б – вид со стороны цилиндрического уровня;

в – вид со стороны окуляра зрительной трубы без предохранительного колпачка:

5 – корпус зрительной трубы;

10 – окуляр с диоптрийным кольцом;

11 – контактный цилиндрический уровень;

12 – юстировочные винты цилиндрического уровня;

15 – металлическая пластина;

16 – крепежные винты сетки нитей.

Нивелир крепят к штативу с помощью станового винта и пружинящей пластины. В отвесное положение ось вращения нивелира устанавливают по круглому уровню 3 с помощью подъемных винтов 1, винтовая нарезка которых входит в гнезда подставки (трегера) 7. Для приближенного наведения трубы на рейку служит мушка над объективом зрительной трубы нивелира, для точного — наводящий винт 6, который работает, когда труба зафиксирована закрепительным винтом 8. Винт кремальеры 4 служит для фокусировки трубы, а резкость изображения сетки нитей достигается вращением диоптрийного кольца окуляра 10. Перед каждым отсчетом по рейке визирную ось нивелира устанавливают в горизонтальное положение элевационным винтом 2. Изображения половинок концов пузырька контактного цилиндрического уровня 11 через систему призм передаются в поле зрения трубы. Если центр пузырька уровня совместить с нуль-пунктом ампулы, то произойдет оптический контакт — изображения половинок концов пузырька уровня будут равными по длине и образуют в верхней части один овал. При наклоне оси уровня контакт нарушается.

Источник

Adblock
detector