Меню

Односторонняя автоматическая сварка под флюсом труб

Способы выполнения сварных соединений труб под флюсом

Способы выполнения сварных соединении под флюсом

При автоматической сварке под флюсом стыковые швы трубопроводов и листовых конструкций выполняют односторонними и двусторонними. Сварку стыков можно выполнять как с разделкой кромок, так и без нее. Разделку кромок можно заменить необходимым зазором в стыке. Односторонние и двусторонние швы выполняют однопроходными и многопроходными. Для обеспечения нормального провара и предохранения от протекания жидкого металла через зазор стыковые швы выполняют на флюсовой подушке, на медной или флюсомедной подкладке, на остающейся или временной монтажной подкладке, с подваркой корня шва, а также на весу.

Односторонняя многопроходная сварка трубопроводов

Одностороннюю многопроходную сварку с ручной подваркой корня шва применяют при сооружении магистральных трубопроводов. Корневой слой шва выполняют на месте центровки и сборки труб — трубосварочной линии или сборочном кондукторе. Стыки собирают с зазором, который для электродов с основным покрытием составляет 2-3,5 мм, а для электродов с целлюлозным покрытием — 1,5-2,5 мм. Сварку первого слоя выполняют чаще снаружи трубы в поворотном или неповоротном положении. Первый слой шва, во избежание получения прожогов при автоматической сварке под флюсом, должен иметь толщину не менее 4 мм, а в местах с увеличенным зазором (более 3 мм) и при смещении кромок стыка — не менее 5 мм. При сооружении магистральных трубопроводов из низколегированных сталей с пределом прочности до 530 МПа для сварки первого (корневого) слоя шва применяют электроды с целлюлозным покрытием марки ВСЦ-4 диаметром 4 мм или электроды с основным покрытием марки УОНИ-13/55 диаметром 3-3,25 мм. При сварке труб из сталей σв>530 МПа первый слой выполняют электродами марки ВСЦ-4А. Трубы из сталей повышенной и высокой прочности перед сваркой корневого слоя шва предварительно подогревают. Первый заполняющий слой накладывают при помощи автоматической сварки под флюсом по корневому слою. Толщину заполняющего слоя выбирают с учетом толщины корневого слоя, так как при сварке на повышенном режиме корневой слой можно прожечь мощной дугой. Глубину проплавления Н определяют в соответствии с формулой (25). Число слоев автоматической сварки устанавливают в зависимости от толщины стенки трубы. Для стенки толщиной 12,5 мм автоматическую сварку выполняют в два слоя, при большей толщине стенки — не менее чем в три слоя.

Сварку труб диаметром 1020-1420 мм с толщиной стенки до 20 мм, изготовленных из низколегированных высокопрочных сталей, выполняют с гарантированным проваром корня шва. Для этого выполняют внутреннюю подварку корня шва как электродами, так и автоматической сваркой под слоем флюса. При ручной подварке стык собирают с указанным зазором и подварку выполняют тотчас после завершения сварки корня шва. Если автоматическую подварку выполняют тотчас после сварки корня шва, то стык собирают без зазора и сваривают корневой шов без обязательного провара. После этого автоматом под слоем флюса подваривают корень шва внутри трубы. В этом случае разделку кромок труб выполняют с меньшими углами, что требует меньшего количества присадочного металла и исключается прожог при сварке заполняющих слоев. Подварку корня шва выполняют и как завершающую операцию после полной сварки стыка. Такая подварка гарантирует полный провар корня шва и устраняет дефекты несплавления первого слоя с корневым.

На выбор оптимального режима сварки заполняющих слоев шва оказывают значительное влияние толщина корневого слоя, род тока и его полярность, свойства сварочных материалов, особенно марка флюса в сочетании со сварочной проволокой и т. п.

Автоматическую сварку под флюсом АН-348А стыков труб из малоуглеродистых сталей (σв 2 при температуре — 40 °С.

Сварку под флюсом АН-22 применяют в сочетании с марганцовистыми проволоками Св-08ГА, Св-10ГА для северной климатической зоны, особенно для надземной прокладки трубопроводов, для обеспечения гарантированных значений ударной вязкости металла шва в области отрицательных температур.

При автоматической сварке стыков трубопроводов из низколегированных сталей повышенной прочности (σв>550 МПа) целесообразно применять флюс АН-22 в сочетании с малоуглеродистыми и низколегированными молибденсодержащими сварочными проволоками Св-08ХМ и Св-08МХ, что обеспечивает весьма высокую прочность металла шва σв>700 МПа и гарантирует ударную вязкость ак = 0,4÷0,6 МДж/м 2 при температуре -60 °С. Оптимальные прочностные свойства сварных соединений обеспечиваются при qп = 36÷40 кДж/см.

Сварку под флюсом АН-47 в сочетании с проволоками Св-08ГА, Св-08ХМ, Св-08МХ применяют во всех климатических зонах для сталей с пределом прочности σв>550 МПа. Применение флюса АН-47 с проволокой Св-08ХМ обеспечивает высокие механические свойства наплавленного металла (σа= = 725 МПа, ак = 0,6÷0,8 МДж/м 2 при температуре — 60°С.)

Сварка под флюсом АН-60 отличается той особенностью, что позволяет вести процесс на повышенных скоростях с одновременным увеличением погонной энергии. Этот флюс используют для сварки трубопроводов из малоуглеродистых и низколегированных сталей (σв 2 при температуре — 20 °С.

Сварку под керамическим флюсом КВС-19 применяют для монтажа трубопроводов, изготовленных из малоуглеродистых и низколегированных сталей (σв = 550 МПа), которые укладывают под землей в средних и южных климатических зонах. Флюс КВС-19 используют в сочетании с проволоками Св-08А, Св-08АА и Св-08ГА. Сварные соединения, выполненные проволокой Св-08ГА, имеют σв = 480÷500 МПа, ак = 0,55 ÷ 0,75 МДж/м 2 при температуре -40 °С.

Сварка под керамическим флюсом ВСКФ-60 малоуглеродистыми проволоками Св-08А, Св-08АА позволяет обеспечить предел прочности шва σв = 660 МПа и ак = 0,72÷0,85 при температуре — 60° С благодаря обеспечению в металле шва легирующих добавок (примерно 0,4% молибдена, 1,2-1,4% марганца и 0,25-0,4% кремния). Флюс ВСКФ-60 применяют для сварки труб из низколегированных сталей с пределом прочности σв>550 МПа в северных районах.

Односторонняя многопроходная сварка с автоматической и полуавтоматической подваркой корня шва в среде углекислого газа производится на сварочной базе в различных климатиче

ских зонах. Корневой слой шва поворотных и неповоротных стыков трубопроводов (σв>550 МПа) выполняют на специальном промежуточном сварочном стенде. Сварку ведут проволокой Св-08Г2С, обеспечивая предел прочности наплавленного металла σв = 738 МПа, aк = 0,63 МДж/м 2 при температуре -60 °С.

Первый слой шва, во избежание получения прожогов при автоматической сварке под флюсом, должен иметь толщину не менее 4 мм. Последующие заполняющие слои шва выполняют также автоматической сваркой под флюсом.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8 Августа 2021 17:14
Полноприводный фэтбайк своими руками

6 Августа 2021 17:13
Роботизированный деревообрабатывающий центр: демонстрация возможностей

6 Августа 2021 15:51
Онлайн-конференция ”MetalConf 2021: как развивать бизнес по продаже металла” — 11.08 в 13

Источник

Лекция № 3 – 5

ГОСТ 8713-79 о сварке под флюсом

Сварка, в которой зона расплавленного металла защищается флюсом, была изобретена достаточно давно – в XIX веке. Разработал данную технологию Н. Славянов, а первый автоматизированный сварочный аппарат для ее реализации и практические основы выполнения были созданы уже в 1927 году Д. Дульчевским. Практически сразу же после этого автоматическая сварка под флюсом стала активно внедряться в производственные процессы на крупных отечественных промышленных и строительных предприятиях.

На протяжении всего периода существования данной технологии и сама сварка под слоем флюса, и оборудование для ее выполнения постоянно развивались. Вопросами совершенствования метода и техники для его практической реализации занимались ведущие исследовательские институты Советского Союза: Институт электросварочных агрегатов Советского Союза, ЦНИИ Тяжелого машиностроения, Институт имени Е.О. Патона и др.


Схема сварки под слоем флюса

Технология автоматической сварки под флюсом детально регламентируется ГОСТ 8713-79. Там же приведена классификация способов сварки под защитным слоем флюса, которые могут использоваться для соединения сталей и сплавов, имеющих никелевую и железоникелевую основу. ГОСТ 8713-79 выделяет два таких способа: механизированная и автоматическая сварка под слоем флюса. А эти разновидности делятся на следующие подвиды:

  1. механизированные: выполняемые на весу (МФ), с предварительно выполненным подварочным швом (МФш), с использованием остающейся подкладки (МФо);
  2. автоматические: выполняемые на подкладке (АФо) и с использованием флюсовой подушки (АФф), с выполнением предварительной подварки корня шва (АФк), с применением так называемого медного ползуна (АФп), выполняемые на весу (АФ), с выполнением предварительного подварочного шва (АФш), сварка на флюсомедной подкладке (АФм).


Некоторые виды швов, применяемых при сварке под флюсом

Также в ГОСТ 8713-79 указаны типы сварных соединений, получаемых при использовании данных методов, которые могут быть:

  • одностороннего типа; двухстороннего; стыкового одностороннего – замковые, которые могут быть выполнены с прямолинейным или криволинейным скосом обеих кромок, с симметричным скосом одной кромки, со скосом ломаного типа, вообще без скоса – с выполнением последующей строжки, с отбортовкой и несимметричным скосом обеих кромок;
  • углового двухстороннего и одностороннего типа, при выполнении которых скосов может и не быть, они могут быть несимметричными, а также выполненные с отбортовкой;
  • нахлесточные швы, выполняемые без скоса, с одной или двух сторон;
  • тавровые швы двух- и одностороннего типа.

Пример работы сварки под флюсом увидеть на следующем видео:

ГОСТ 11533-75 перечисляет требования, предъявляемые к автоматическим и полуавтоматическим способам сварки под слоем флюса деталей, которые изготовлены из углеродистых и низколегированных сталей. К таким способам сварки относят:

  • дуговую полуавтоматическую сварку, выполняемую с использованием стальной подкладки (Пс); сварку полуавтоматического типа (П) и полуавтоматическую с подварочным швом (Ппш);
  • автоматическую сварку, выполняемую с предварительным подварочным швом (Апш);
  • автоматическую сварку под флюсом, выполняемую на специальной стальной подкладке.



Технология двухсторонней автоматической сварки под флюсом

⇐ ПредыдущаяСтр 5 из 34Следующая ⇒

9.1.2.1 Подготовку стыков, сборку и предварительный подогрев следует выполнять в соответствии с требованиями раздела 8. При подготовке производится механическая обработка торцов труб станками типа СПК, входящими в состав оборудования трубосварочной базы. Форма разделки кромок под сварку представлена на рисунке 9.1.

9.1.2.2 После установки прихватки в соответствии с требованиями раздела 8, собранный стык следует повернуть на 180о таким образом, чтобы прихватка находилась в нижней части стыка (в положении “6 час”), после чего в верхней части стыка (в положении «12 час») начинают сварку первого наружного слоя шва.

9.1.2.3 Сварку стыка производят в следующем порядке:

− последующие наружные слои шва (если они регламентированы операционной технологической картой).

9.1.2.4 Рекомендуется выполнять одновременную сварку второго наружного и внутреннего слоев шва.

а − для труб с толщиной стенки от 8,0 до 10,0 мм б – для труб с толщиной стенки от 10,1 до 18,0 мм
в – для труб с толщиной стенки от 18,1 до 21,0 мм б – для труб с толщиной стенки от 10,1 до 18,0 мм

Рисунок 9.1 — Типы разделки кромок труб диаметром от 1020 до 1220 мм для

двусторонней автоматической сварки под флюсом

9.1.2.5 Во избежание образования шлаковых включений и непроваров рекомендуется выполнять шлифовальной машинкой запилы начального и конечного участков прихватки, а также начального участка первого наружного слоя. Глубина запила от 3 до 4 мм, ширина от 3 до

4 мм, длина от 25 до 40 мм. Допускается шлифовка усиления на прихватке до 0,5 +0,5 мм.

9.1.2.6 Режимы двухсторонней сварки стыков труб из низкоуглеродистых и низколегированных сталей с использованием комбинаций «плавленый флюс − проволока» приведены в таблице 9.1. Режимы двухсторонней сварки стыков труб диаметром от 1020 до 1220 мм с использованием комбинации «агломерированный флюс − проволока» представлены

Таблица 9 . 1 — Режимы двухсторонней сварки поворотных стыков труб диаметром от 1020 до 1220 мм с использованием комбинаций «плавленый флюс − проволока».

Толщина стенки трубы, мм Диаметр электродной проволоки мм Порядковый номер слоя Сварочный ток, А Напряжение на дуге, В Скорость сварки, м/ч. Смещение электрода с зенита (надира) трубы*, мм
Наружная сварка
От 8,0 до 11,5 3,0; 3,2 Первый От 600 до 700 От 40 до 44 От 35 до 45 От 50 до 70
От 11,6 до 17,5 Первый От 650 до 800 От 42 до 44 От 40 до 50 От 50 до 70
Последующие От 700 до 800 От 44 до 46 От 35 до 45 От 40 до 60
От 17,6 до 27,0 Первый От 800 до 900 От 42 до 44 От 40 до 50 От 60 до 80
Последующие От 850 до 950 От 44 до 46 От 45 до 55 От 50 до 70
Облицовочный От 750 до 800 От 46 до 48 От 40 до 45 От 40 до 60
От 15,7 до 27,0 4,0 Первый От 850 до 950 От 42 до 44 От 40 до 50 От 60 до 80
Последующие От 900 до 1000 От 44 до 46 От50 до 60 От 50 до 70
Облицовочный От 800 до 900 От 46 до 48 От 40 до 45 От 40 до 60
Внутренняя сварка
От 8,0 до 11,5 3,0; 3,2 Первый От 450 до 600 От 42 до 44 От 35 до 45 От 10 до 20
От 11,6 до 17,5 Первый От 600 до 800 От 42 до 46 От 35 до 45 От 10 до 20
От 17,6 до 27,0 Первый От 700 до 850 От 40 до 50 От 10 до 20
От 15,7 до 27,0 4,0 Первый От 750 до 850 От 44 до 46 От 40 до 50 От 15 до 25
* Смещение с зенита трубы устанавливается против направления ее вращения, смещение с надира трубы – по или против направления вращения. Примечания 1. Сварочный ток — постоянный, полярность обратная; 2. Вылет проволоки диаметром 3,0 мм и 3,2 мм от 35 мм до 40 мм, диаметром 4,0 мм от 40 мм до 45 мм; 3. угол наклона электрода «вперед» – до 300.

9.1.2.7 При заклинивании шлака в разделке во время сварки первого наружного слоя шва и для улучшения сопряжения шва со стенками разделки смещение электрода с зенита трубы рекомендуется увеличить на величину от 5 до 10 мм по сравнению со значениями, приведенными в таблицах 9.1 и 9.2.

9.1.2.8 Минимальное число наружных слоев шва в зависимости от типоразмера труб приведено в таблице 9.3.

Таблица 9 . 2 — Режимы двухсторонней сварки поворотных стыков труб диаметром от

1020 до 1220 мм с использованием комбинации «агломерированный флюс − проволока»

Толщина стенки трубы, мм Диаметр электродной проволоки мм Порядковый номер слоя Сварочный ток, А Напряжение на дуге, В Скорость сварки, м/ч. Смещение электрода с зенита (надира) трубы*, мм
Наружная сварка
От 8,0 до 11,5 3,0; 3,2 Первый От 600 до 700 От 30 до 34 От 40 до 50 От 50 до 70
От 11,6 до 17,5 Первый От 650 до 750 От 29 до 32
Последующие От 600 до 700 От 33 до 36 От 30 до 40 От 40 до 60
От 17,6 до 27,0 Первый От 700 до 780 От 30 до 34 От 38 до 45 От 55 до 70
Последующие От 730 до 790 От 32 до 35 От 35 до 42 От 50 до 65
Облицовочный От 580 до 650 От 34 до 37 От 30 до 35 От 45 до 60
От 15,7 до 27,0 4,0 Первый От 750 до 830 От 29 до 33 От 35 до 45 От 55 до 75
Последующие От 730 до 800 От 31 до 34 От 33 до 43 От 50 до 70
Облицовочный От 700 до 750 От 33 до 36 От 30 до 33 От 45 до 60
Внутренняя сварка
От 8,0 до 11,5 3,0; 3,2 Первый От 550 до 630 От 30 до 32 От 32 до 40 От 5 до 20
От 11,6 до 17,5 Первый От 630 до 750 От 31 до 33 От 31 до 36
От 17,6 до 27,0 Первый От 750 до 820 От 32 до 34 От 30 до 35
От 15,7 до 27,0 4,0 Первый От 720 до 800 От 32 до 34 От 30 до 33 От 10 до 50
* Cмещение с зенита и надира трубы устанавливается против направления ее вращения; Примечания 1 Сварочный ток – постоянный, полярность обратная. Источник питания должен быть настроен для сварки на жесткой вольтамперной характеристике. Отклонение напряжения на дуге от номинального значения должно быть не более ± 1 В. 2 Вылет электрода от 32 мм до 40 мм; 3. угол наклона электрода «вперед» – от 100 до 200 (наружная сварка) и от 2 до 80(внутренняя сварка); 4 Высота слоя флюса при сварке должна быть не менее 25 мм. При его повторном применении следует добавлять к ранее использованному флюсу от 25 % до 50% нового (неиспользованного) флюса.

Таблица 9 . 3 – Минимальное число наружных слоев шва при двухсторонней

автоматической сварке под флюсом

Диаметр трубы, мм Толщина стенки трубы, мм Минимальное число наружных слоев шва
От 1020 до 1220 от 8,0 до 11,5
от 11,6 до 17,5
от 17,6 до 21,5
от 21,6 до 24,0
от 24,1 до 27,0

9.1.2.9 Внутренний слой шва должен свариваться в один проход. Величина усиления внутреннего и облицовочного слоев шва должна находиться в пределах от 1 до 3 мм. Ширина наружного и внутреннего слоёв шва представлена в таблице 9.4.

9.1.2.10 Геометрические размеры швов, определяемые по макрошлифам, должны соответствовать рисунку 9.2 и таблице 9.4.

Таблица 9 .4 – Требования к ширине наружного и внутреннего слоёв шва при двухсторонней сварке под флюсом

Диаметр трубы, мм Толщина трубы, мм стенки Ширина шва при сварке под флюсом
Наружный шов Внутренний шов
От 1020 до1220 от 8,0 до 17,5 14,3 ± 3 14 ± 2
от 17,6 до 21,5 20 ± 4 20 ± 3
от 21,6 до 24,5 21 ± 4 24 ± 4
от 24,1 до 27,0 23 ± 4
от 27,1 до 30 25 ± 4

9.1.2.11 Геометрические размеры швов определяют на трех макрошлифах, изготовленных из допускного стыка и из каждого 200 стыка. Темплеты для макрошлифов вырезают на любом участке сварного соединения равномерно по периметру стыка, но не ближе 200 мм от места начала или окончания процесса сварки.

9.1.2.12 В случае отклонения геометрических параметров от заданных значений сварку следует прекратить, отладить оборудование и режим сварки, после чего выполнить сварку двух новых стыков, из которых вырезать макрошлифы. В случае, если размеры швов по макрошлифам соответствуют установленным требованиям, сварку можно продолжить.

9.1.2.13 Остальные 199 стыков, предшествующие первому вырезанному, следует считать годными, если в результате неразрушающего контроля в них не выявлено недопустимых дефектов.

9.1.2.14 Если облицовочный слой шва смещен относительно первого наружного слоя,

но при этом перекрывает всю его ширину, то стык считается годным при отсутствии недопустимых дефектов шва и соблюдении заданных режимов. В данном случае оси первого наружного слоя и внутреннего слоя шва должны совпадать или быть смещены относительно друг друга на расстояние не более 2 мм.

1 – ось первого (наружного) слоя шва;

2 – ось внутреннего слоя шва 3 – условная ось стыка;

а – перекрытие наружного и внутреннего слоев шва ( а ≥ 3 мм при толщине стенки труб

12 мм и более; а≥ 2 мм при толщине стенки труб менее 12 мм; с – смещение осей первого наружного и внутреннего слоев шва от условной оси стыка

hН и hВ – глубина проплавления соответственно первого наружного и внутреннего слоев шва;

ВВ – ширина внутреннего слоя шва.

Рисунок 9.2 — Макрошлиф для оценки геометрических параметров сварного шва

Воспользуйтесь поиском по сайту:



Технология сварки под слоем флюса

Автоматические и механизированные виды сварки под слоем флюса отличаются от традиционной технологии тем, что дуга при ее выполнении горит не в открытом воздухе, а под слоем сыпучего вещества с рядом специальных свойств, которое называется флюсом. В момент зажигания сварочной дуги одновременно начинают плавиться металл детали и электрода, а также используемый флюс. В результате испарений металла и флюса, образующихся в зоне сварки, формируется газовая полость, которая и наполнена образовавшимися парами, смешанными со сварочными газами.


Пример внешнего вида шва после сварки под слоем флюса

Полость, образующаяся при такой сварке, в своей верхней части ограничена слоем расплавленного флюса, который выполняет не только защитную функцию. Расплавленный металл электрода и свариваемой детали, взаимодействуя с флюсом, проходит металлургическую обработку, что способствует получению шва высокого качества.

При удалении дуги от определенной зоны сварки расплавленный флюс застывает, образуя твердую корку на готовом шве, которая легко удаляется после остывания изделия. Если выполняется автоматическая сварка под флюсом, то неизрасходованный флюс собирается с поверхности детали при помощи специального всасывающего устройства, которым оснащено автоматизированное оборудование.

На видео мастер объясняет некоторые нюансы работы при сварке с применением флюса:

Сварка под слоем флюса, выполняемая как механизированным, так и автоматизированным способом, обладает целым рядом весомых преимуществ.

  • Процесс можно осуществлять с использованием токов значительной величины. Как правило, сила тока при выполнении такой сварки ориентировочно находится в пределах 1000–2000 Ампер, хотя вполне можно довести это значение и до 4000 А. Для сравнения: обычную дуговую сварку выполняют при силе тока не больше 600 А, дальнейшее увеличение силы тока приводит к сильному разбрызгиванию металла и невозможности сформировать сварочный шов. Между тем увеличение силы тока позволяет не только значительно ускорить процесс сварки, но и получить сварное соединение высокого качества и надежности.
  • При сварке, выполняемой под слоем флюса, формируется закрытая дуга, которая расплавляет металл детали на большую глубину. Благодаря этому кромки свариваемой детали можно даже не подготавливать для их лучшей свариваемости.
  • Поскольку режимы сварки под слоем флюса предполагают использование тока большой силы, скорость процесса значительно увеличивается. Если сравнивать скорость сварки, выполняемой под слоем флюса, которая измеряется в длине шва, получаемого за определенный промежуток времени, то она может в 10 раз превышать аналогичный параметр обычной дуговой сварки.
  • Так называемый газовый пузырь, формируемый при выполнении сварки под защитным слоем флюса, препятствует разбрызгиванию металла, что предоставляет возможность получать сварочные швы высокого качества. Кроме того, это значительно снижает потери электродного металла, которые составляют максимум 2% от массы расплавленного материала. Экономится в таком случае не только электродный материал, но и электрическая энергия.


Общая схема дуговой сварки под флюсом

Выбор режима сварки, выполняемой под слоем флюса, осуществляется по следующим основным параметрам:

  • диаметр используемой электродной проволоки;
  • род тока и его полярность;
  • скорость, с которой выполняется сварка;
  • напряжение для формирования сварочной дуги.

Дополнительными параметрами, влияющими на определение режима сварки под флюсом, являются:

  • размер частиц, состав и плотность используемого флюса;
  • значение вылета электродной проволоки;
  • параметр, определяющий, как электрод и свариваемая деталь располагаются относительно друг друга.

Технология автоматической сварки под флюсом

Сварку под слоем флюса производят электродной проволокой, которую подают в зону горения дуги специальным механизмом, называемым сварочной головкой автомата. Металл сварочной проволоки расплавляется дугой и переносится каплями в сварочную ванну. В сварочной ванне металл сварочной проволоки смешивается с расплавленным основным металлом. Токоподвод к проволоке осуществляется через мундштук, изготовляемый из меди или ее сплавов. Малый вылет электрода, отсутствие покрытия, большая скорость подачи электродной проволоки позволяют значительно увеличить силу сварочного тока по сравнению с ручной сваркой электродами тех же диаметров. Это приводит к ускорению процесса плавления сварочной проволоки, увеличению глубины проплавления основного металла и, как следствие, значительному повышению производительности. Коэффициент наплавки достигает в некоторых случаях ЗОгДА-ч). Достаточно толстый слой флюса (до 60 мм), засыпаемый в зону сварки, расплавляется на 30%. Это делает дугу закрытой (невидимой) и обеспечивает надежную защиту расплавленного металла от окружающего воздуха, стабилизирует сварочный процесс. Существенным достоинством сварки под флюсом являются незначительные потери на угар металла и его разбрызгивание. Вслед ствие увеличения эффективной тепловой мощности дуги может быть расширен диапазон толщин деталей, свариваемых без скоса кромок. Например, при обычных режимах сварки под флюсом деталей встык без скоса кромок, можно сваривать металл толщиной 15-20 мм. В этом случае увеличивается проплавление основного металла, и его доля в металле шва составляет 0,5-0,7. При этом значительно снижается расход электродной проволоки. При сварке угловых швов увеличенная глубина провара обеспечивает большее сечение, чем это достигается при ручной сварке с одинаковым катетом шва. Как отмечалось ранее, флюсы влияют на устойчивость горения дуги, формирование и химический состав металла шва. Флюсы в значительной мере определяют стойкость металла шва против образования пор и кристаллизационных трещин. Требуемые механические свойства, структура металла шва и сварного соединения в целом обеспечиваются применением сочетания флюса и электродной проволоки. Размеры и форма шва при сварке под флюсом характеризуются глубиной провара, шириной шва, высотой выпуклости и т.д. Закономерности изменения формы шва обусловлены главным образом режимом сварки и практически мало зависят от типа сварного соединения. Параметры режима сварки под флюсом условно можно разбить на основные и дополнительные. К основным параметрам относят величину сварочного тока, его род и полярность, напряжение дуги, диаметр электродной проволоки и скорость сварки. При сварке под флюсом с постоянной скоростью подачи электродной проволоки часто вместо сварочного тока используют термин «скорость подачи электродной проволоки» . Чем выше скорость подачи электродной проволоки, тем больше должен быть сварочный ток, чтобы расплавить проволоку, подаваемую в сварочную ванну. К дополнительным параметрам режима сварки под флюсом относят величину вылета электродной проволоки, состав и строение флюса, а также положение изделия и электрода при сварке. Глубина провара и ширина шва зависят от всех параметров режима сварки. С увеличением силы тока глубина провара увеличивается. При сварке постоянным током обратной полярности глубина провара примерно на 40 — 50 % больше, чем при сварке постоянным током прямой полярности. При сварке переменным током глубина провара на 15 — 20 % ниже, чем при сварке постоянным током обратной полярности. Уменьшение диаметра электродной проволоки приводит к увеличению глубины провара, так как увеличивается плотность тока. При этом ширина шва уменьшается. Из приведенных данных следует, что при автоматической сварке под флюсом для получения глубины провара 5 мм при диаметре электродной проволоки 2 мм требуется сварочный ток 350А, а при диаметре 5 мм — 500А. На практике больше применяют малые диаметры электродной проволоки. Это позволяет применять меньшие значения сварочного тока в сочетании с высокой производительностью процесса сварки. Напряжение дуги при сварке под флюсом не оказывает существенного влияния на глубину провара. Увеличение напряжения дуги приводит к увеличению ширины шва. При этом снижается выпуклость шва, глубина проплавления остается почти постоянной. При необходимости увеличения толщины свариваемого металла для правильного формирования шва необходимо увеличивать силу сварочного тока и напряжение дуги. Влияние скорости сварки на глубину провара неоднозначно. При малых скоростях сварки 10-12 м/час глубина проплав-ления при прочих равных условиях минимальная. При увеличении скорости сварки ширина шва заметно сокращается, выпуклость шва несколько возрастает, глубина проплавления незначительно увеличивается. При увеличении скорости сварки до 70-80 м/час глубина проплавления и ширина шва уменьшаются, а при дальнейшем увеличении скорости сварки влияние различных факторов приводит к тому, что образуются краевые непровары -зоны не-сплавления. Этот метод чаще применяется при двухдуговой сварке. Наклон изделия по отношению к горизонтальной плоскости также оказывает влияние на формирование шва. При сварке на подъем увеличивается глубина провара и уменьшается ширина шва. Если угол подъема изделия при сварке под флюсом будет более 6 °, то по обе стороны шва могут образоваться подрезы. При сварке на спуск глубина провара уменьшается. Аналогичный процесс формирования шва происходит при сварке с уменьшением насыпной массы флюса. Зазор между деталями, разделка кромок и вид сварного соединения не оказывают значительного влияния на форму шва. Очертание провара и общая высота шва Н остаются практически постоянными. Чем больше зазор или разделка кромок, тем меньше доля основного металла в металле шва . Из рисунка видно, что в зависимости от зазора или разделки кромок шов может быть выпуклым, нормальным или вогнутым. Наиболее существенное влияние на форму и качество шва влияет непосредственно зазор между деталями. При сварке вручную сварщик может сам выправить дефект сборки (заплавить увеличенный зазор) и обеспечить требуемую форму шва. При автоматической сварке это осуществить невозможно. Плохая сборка не обеспечит заданные зазоры и получение качественного шва.

Оборудование, которым осуществляют сварку под флюсом

Рассмотрим существующее оборудование для сварки под флюсом. Когда речь идет о проведении сварочных работ в условиях производственного цеха, то перед началом процесса сварки свариваемые детали надежно фиксируют на специальном сборочном стенде или при помощи других приспособлений, чтобы полностью исключить возможные незапланированные движения свариваемых элементов в ходе работы.


Сварочный трактор (производитель Multitrac)

На прокладке трубопроводов для сваривания стыков в основном используют специальные мобильные сварочные головки, а при производстве листовых конструкций применяются либо стационарные установки, либо универсальные мобильные (к примеру, сварочный трактор). Трактор для сварки под слоем флюса – это самоходная тележка с электродвигателем, на которой установлена автоматическая сварочная головка. Такое устройство может двигаться вдоль свариваемых деталей по рельсовому пути или же непостредственно по самим деталям.


Сварочная колонна и свариваемая деталь на роликовых опорах

В условиях цехов также активно используются передвижные или стационарные сварочные колонны, которые в комбинации с роликовыми опорами или вращателями служат для сварки продольных и кольцевых швов.

Источник

Читайте также:  Как изолируют канализационные трубы от шума
Adblock
detector