Меню

Контроль качества сборки труб

Контроль трубопроводов

Трубопроводы — ­ это артерии промышленности. Их классифицируют по разным признакам, например, в зависимости от предназначения выделяют:

  • магистральные трубопроводы, которые, к примеру, транспортируют кровь Земли от места добычи до места переработки и/или потребления (нефтегазовая область);
  • технологические трубопроводы, которые соединяют предприятия и используются для транспортировки различного сырья, газа, жидкостей и т.п.
  • дюкеры — участки трубопроводов, прокладываемые по местности определённого характера, и тонели, которые служат вместилищем для тепло- и электросетей, а так же других видов трубопроводных путей.

Этапы контроля трубопроводов

Термин “контроль трубопроводов” употребляется в разных значениях, он может означать и совокупность всех вышеописанных действий, и каждый пункт в отдельности. Каждый раз его следует трактовать в зависимости от контекста.

Каждый этап контроля качества трубопроводных путей является многоступенчатым процессом. Например, контроль качества металла включает проверку сопроводительных документов, маркировки, тары и упаковки, размеров, состояния поверхности, структуры и состава. Для каждого этапа используются специальная аппаратура, к примеру, при контроле изоляции трубопроводов, который осуществляется во время сборки под сварку, а так же уже в процессе работы трубопроводного транспорта и представляет собой проверку качества нанесения изоляционного слоя, его целостность, толщину и сплошность, применяют толщинометры покрытий, электроискровые дефектоскопы, адгезиметры и др.

Неразрушающий контроль сварных швов трубопроводов

Необходима так же постоянная проверка на предмет целостности и отсутствия дефектов сварных швов трубопроводов, которые приводят к ухудшению эксплуатационных показателей, герметичности, сплошности и т.д. Выделяют следующие типы дефектов.

Наружные (поверхностные и подповерхностные, которые залегают на глубине 2-3 мм) — наплывы, поры, выходящие на поверхность, прожоги и т.д.

Внутренние (глубинные) — поры и трещины, которые не выходят на поверхность металла, различные включения, непровары, несплавления и т.д.

Для выявления определённого типа дефектов подходят различные методы, именного поэтому неразрушающий контроль сварных соединений (далее НК) — это всегда комплексный подход, который сочетает в себе несколько видов НК.

Согласно ГОСТ 18353-79 в зависимости от специфики используемого индикатора (магнитное поле, рентгеновское излучение, проникающие вещества), выделяют следующие методы неразрушающего контроля:

    Методы, позволяющие выявлять наружные дефекты.

  • Магнитный (магнитопорошковый метод). Реализуется благодаря эффектам магнетизма. На намагниченный объект исследования наносится специальная суспензия, которая обазует определённые структуры в местах дефектов. Этот метод работает только для выявления наружных дефектов металла: трещин, кратеров, наплывов, прожогов и т.п.
  • Вихретоковый. В объекте возбуждаются вихревые токи, благодаря, к примеру, индукционной катушке. На основе взаимодействия электромагнитного поля катушки и индуцированного тока объекта делаются выводы о состоянии металла. Метод позволяет выявлять поверхностные дефекты, а так же дефекты, залегающие на глубине 2-3 мм. Помимо этого, при помощи вихревого контроль можно получить информацию о структуре металла, его размерах и составе.
  • Оптический. Используется оптическое излучение (волны, длиной от 10-5 до 10-3 мкм). Есть одно но — для обнаружения не только поверхностных, но и внутренних дефектов метод используется только применительно к прозрачным объектам, т.е. в случае контроля качества сварных стыков трубопроводов он работает только для выявления наружных дефектов.
  • Проникающими веществами. Подходит исключительно для выявления внешних поверхностных или же сквозных дефектов. На подготовленную поверхность наносится индикаторная жидкость (пенетрат), которая проникает в трещины и задерживается там; локализация дефектов происходит после нанесения проявителя визуальным осмотром либо при помощи специальных преобразователей.

  • Методы, позволяющие выявлять глубинные дефекты.

    • Электрический. Реализуется на основе взаимодействия электрического поля с объектом исследования, либо на анализе электрического поля, возникающего в объекте. Например, при приложении электрического напряжения на объект в местах дефекта регистрируется падение напряжения, которое поможет рассказать о характере и размерах повреждений.
    • Радиоволновой. Применяется для объектов, пропускающих радиоволны. Информацию о дефектах получают путём фиксации изменения показателей электромагнитных волн, взаимодействующих со сварным швом.
    • Тепловой. Для поиска дефектов используется активный вид теплового контроля, при котором объект исследования подвергается тепловому излучению, которое передаётся на регистрирурющий прибор. Повышенная/пониженная температура в определённых местах шва говорит о наличии в них дефектов. Применяется для выявления нарушения сплошности в сварном шве (пор, расслоений, шлаковых включений), а так же для локализации проблемных мест в его структуре и некоторых свойствах физико-химического характера.
    • Радиационный (радиографический). Радиационное излучение проникает сквозь предмет, при этом в местах дефектов поглощение лучей выше, и поэтому на специальной плёнке они проявятся светлыми пятнами. Существует несколько подвидов этого метода, самые распространённые из которых рентгенографический контроль, рентгеноскопия и метод гамма-излучения. Этот вид неразрушающего контроля практически универсальный, он позволяет отследить дефекты по всей толщине шва, даёт представление об их характере, размерах и местоположении. Радиографический контроль применяется, как правило, для просвечивания 5-10% шва, кроме отдельных случаев, в которых проверка этим методом доходит до 100% длины шва. Классификация дефектов сварных швов по ГОСТу 23055-78 составлена на основе радиографического метода. Наша компания специализируется на рентгенографическом методе контроля, являясь одним из лидеров на Российском рынке радиографии. Рентгеновские аппараты нашего производства могут применяться в суровых климатических условиях Крайнего Севера (модификации “С”), на труднодоступных участках трубопроводов, на АЭС.
    • Акустический. Инфразвуковые, звуковые или ультразвуковые волны действуют на объект либо возбуждаются в объекте. С их помощью можно выявить малейшие повреждения металла трубопровода, так же этот метод подменяет радиографический при исследовании, например, угловых стыков трубопроводов.
  • Так же выделяют визуально-измерительный контроль, при котором проверяются размер и форма швов при помощи специальных шаблонов, а так же наличие каких-либо внешних дефектов, например, наплывов.

    За сим краткий обзор о том, что же такое есть контроль трубопроводов, мы завершаем, в следующих статьях рассмотрим более подробно методы неразрушающего контроля сварных соединений, отдельно — радиоаграфию и оборудование, которое для этого используется.

    Термины

    Неразрушающий контроль (НК) — методы контроля качества изделий, при котором не происходит нарушения их целостности.

    Входной контроль — проверка документации, качества труб, и сопутствующего оборудования до того как начался процесс строительства трубопроводных путей.

    Макрошлиф — вырезанный и отшлифованный образец сварного шва.

    Двухсторонняя сварка — сварка, при которой шов выполняется с двух сторон соединеиния труб. Она чревата своими специфичными дефектами, которые могут возникнуть в металле, например, газовыми раковинами. Поэтому сварные стыки, выполненные этим видом сварки проверяются дополнительно по макрошлифам.

    Сплошность — непрерывность металла трубы/сварного шва без пустот.

    Источник

    Монтаж трубопроводов и контроль качества соединений стальных трубопроводов

    Производство сварочно-монтажных работ, контроль качества сварных соединений выполнять в соответствии с требованиями ГОСТ 32569-2013 «Трубопроводы технологические стальные. Требования к устройству и эксплуатации на взрывопожароопасных и химически опасных производствах», Руководства по безопасности «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов, технических условий на трубы.

    С целью повышения качества строительства и обеспечения эксплуатационной надежности на всех этапах должен выполняться входной, операционный и приемочный контроль.

    При входном контроле проверяется соответствие поступающих материалов, деталей трубопроводов и арматуры на соответствие их сертификатам, стандартам, техническим условиям и другой технической документации.

    Проверка труб, деталей и узлов трубопровода, запорной и распределительной арматуры производится организацией-получателем или специализированной службой входного контроля в присутствии представителя организации-получателя в процессе получения указанной продукции от заводов-изготовителей и других поставщиков по месту разгрузки продукции с транспортных средств или после транспортировки ее от места разгрузки до площадки складирования. Освидетельствование и отбраковку осуществляет специальная комиссия заказчика.

    Читайте также:  Алтай сервис труба профильная

    Трубы, фасонные соединительные детали, фланцы, прокладки и крепежные изделия по качеству и техническим характеристикам должны отвечать требованиям нормативных документов, заложенных в проекте.

    Каждая партия труб должна иметь сертификат завода-изготовителя, в котором указывается номер заказа, технические условия или ГОСТ, по которому изготовлены трубы, размер труб и их количество в партии, результаты гидравлических и механических испытаний.

    Все детали, узлы трубопровода и элементы запорной арматуры должны иметь технические паспорта.

    Сварочные материалы должны иметь сертификаты и удовлетворять требованиям государственных стандартов или технических условий.

    Результаты входного контроля оформляются актом с приложением всех документов, подтверждающих качество изделий.

    При монтаже трубопроводов и их элементов допускаются к применению все промышленные методы сварки, обеспечивающие необходимую эксплуатационную надежность сварных соединений. Типы, конструктивные элементы подготовленных кромок должны соответствовать ГОСТ 16037-80.

    Подготовленные под сварку кромки труб и других элементов, а также прилегающие к ним участки по внутренней и наружной поверхностям шириной не менее 20 мм, должны быть очищены от ржавчины и загрязнений до металлического блеска и обезжирены.

    Сварку технологических трубопроводов производить с соблюдением требований РД 03‑613‑03, РД 03-614-03, РД 03-615-03.

    Соединение элементов трубопроводов следует производить сваркой со стыковыми без подкладочного кольца сварными соединениями.

    К производству работ по сварке технологических трубопроводов допускаются сварщики, аттестованные в соответствии с требованиями ПБ 03-273-99.

    Монтаж трубопроводов производить, руководствуясь главой 11 ГОСТ 32569-2013.

    Контроль качества сварных соединений стальных трубопроводов включает:

    • пооперационный контроль;
    • внешний осмотр и измерения;
    • ультразвуковой или радиографический методы;
    • гидравлические испытания.

    Пооперационный контроль предусматривает проверку:

    • качества и соответствия труб и сварочных материалов требованиям стандартов и ТУ на изготовление и поставку;
    • качества подготовки концов труб и деталей трубопроводов под сварку и качества сборки стыков;
    • температуры предварительного подогрева;
    • качества и технологии сварки;
    • режимов термообработки сварных соединений.

    Внешнему осмотру и измерениям подлежат все сварные соединения после их очистки от шлака, окалины, брызг металла и загрязнений на ширине не менее 20 мм по обе стороны от шва.

    По результатам внешнего осмотра и измерений сварные швы должны удовлетворять следующим требованиям:

    • форма и размеры шва должны быть стандартными;
    • поверхность шва должна быть мелкочешуйчатой;
    • переход от наплавленного металла к основному должен быть плавным;
    • трещины в шве и в основном металле не допускаются.

    Сварные соединения технологических трубопроводов подлежат контролю неразрушающими методами (ультразвуковым или радиографическим). ГОСТ 32569-2013 п. 12.3.5, неразрушающему методу подвергаются наихудшие по результатам внешнего осмотра сварные швы по всему периметру трубы. Число контролируемых сварных швов должно быть не ниже приведенных данных (Таблица 23) от общего числа соединений, сваренных каждым сварщиком (но не менее одного).

    Объем контроля сварных соединений ультразвуковым или радиографическим методом в %

    Условия изготовления стыков Категория трубопровода
    P>10 МПа или для группы сред А(а), или для I категории при температуре ниже минус 70°С I II III IV V
    При изготовлении и монтаже на предприятии нового трубопровода, а также при ремонте 100 20 10 2 1 Согласно 12.3.2
    При сварке разнородных сталей 100 100 100 100 100 10
    При сварке трубопроводов, входящих в блоки I категории взрывоопасности 100 100 10 2 1

    Контроль качества сварных соединений осуществляется физическими методами и производится лабораториями строительно-монтажных организаций, выполняющих сварочные работы.

    Радиографический контроль качества сварных соединений трубопроводов должен осуществляться в соответствии с требованиями ГОСТ 7512-82, ультразвуковой контроль — в соответствии с требованиями ГОСТ Р 55724-2013.

    Источник

    Контроль качества сварных соединений трубопроводов

    Контроль качества сварных соединений трубопроводов

    При проведении строительных и любых монтажных работ с использованием стальных труб очень важен контроль качества сварных соединений трубопроводов. От этого напрямую зависит надежность и зачастую безопасность эксплуатации оборудования.

    Нередко из-за допущенной ошибки или пропуска места непровара происходит разрыв под высоким давлением, что может привести к серьезным последствиям.

    Способы проведения контроля качества

    Учитывая важность надежного соединения сварных швов, контроль качества сварных соединений должен выполняться систематически. Это важный технологический процесс, который подразумевает выполнение поиска повреждений, которые могут стать причиной дальнейшего разрушения трубопровода и нарушения работоспособности системы в целом.

    Процесс включает проведение систематического операционного контроля, проведение механических испытаний фрагментов трубопровода со сварным соединением. Также выполняется проверка параметра сплошности стыка по всей толщине металла, потому что место шва должно быть одним куском сплава без утончений, но при этом допускаются наплывы.

    При помощи специальных стендов проводятся пневматические и гидравлические испытания. Все классические способы контроля качества сварных швов труб приведены в ГОСТе 3242-79.

    Кроме разрушающих, также применяются неразрушающие методы:

    • магнитографический контроль;
    • контроль сварных соединений рентгеновским излучением;
    • контроль сварных соединений гамма-излучением;
    • ультразвуковая дефектоскопия соединений.

    Рассмотрим каждый способ по отдельности, потому что все они имеют свои особенности, которые так или иначе влияют на процесс определения состояния сварного соединения. В этом случае выполняется контроль всего периметра стыка на соответствие толщине по всей структуре соединения. В зависимости от нагруженности трубопроводы принято делить на 4 категории.

    Подрез сварного шва

    Требования к сварным швам

    Любые сварные швы в трубопроводе не должны иметь трещин, кратеров, прожогов и иных дефектов некачественной сварки. Также весьма критичны будут подрезы глубиной более 0,5 мм. Данное требование особенно важно для трубопроводов, которые эксплуатируются под давлением от 10 МПа.

    Качество сварных соединений разных толщин металлов проводится своим методом. Например, при толщине стали 16 мм и более применяется радиографический способ. А соединения из сталей ХМ, С и ХГ выполняется ультразвуковым методом, при котором проводится окончательная дефектоскопия.

    Важно соблюдать последовательность проведения контроля качества сварных соединений. Например, перед тем, как провести радиографию или применить ту же ультразвуковую дефектоскопию, необходимо применить магнитопорошковый или цветной способ. Данное требование относится к зонам возле шва на расстоянии 20 мм.

    Магнитографический контроль

    Магнитографический контроль представляет собой ничто иное, как магнитную дефектоскопию. Данный метод позволяет обнаружить, так называемые, поля рассеяния. Они обнаруживаются при намагничивании дефектных мест и отражаются на радиограмме в виде графиков.

    Если шов выполнен качественно и металл сплавлен равномерно по всей толще, то магнитные линии распределяются в нем равномерно без искривлений. Если в шве присутствуют различные дефекты, то они будут распространяться хаотично. Поле отклоняется и в результате этого образуются, так называемые, поля рассеяния.

    Этот метод применяется при выполнении контроля качества полуавтоматической сварки в среде под флюсом или в инертной среде. Толщина металла должна быть в пределах от 2 до 25 мм. Магнитографический метод позволяет выявить следующие дефекты:

    • продольные микротрещины;
    • непровары;
    • цепочки и скопления шлака;
    • газовых пор.

    Все перечисленное оказывает существенно влияние на прочность соединения и может стать причиной фатального разрушения. Процедура контроля при помощи магнитографии проводится в два этапа:

    Сначала изделие намагничивается специальным прибором. На этом этапе происходит запись полей намагничивания на магнитную ленту.

    На втором этапе выполняется считывание информации с ленты. Для этого применяются дефектоскопы.

    Ультразвуковой дефектоскоп Smartor

    Для выполнения намагничивания применяются подвижные и стационарные намагничивающие приборы. Стационарные воздействуют на шов с двух сторон, снаружи и изнутри. Чаще применяются именно подвижные намагничиватели типа ПНУ. В процессе работа ими создается однородный поток, заключенный между двумя полюсами.

    Читайте также:  Трубы пластиковые с защитной оболочкой

    Полюсы соединены сердечником для создания полуцепи магнитного потока. Второй частью сердечника является сварной шов. На сердечник надета намагничивающая катушка. Перемещается аппарат для намагничивания на специальных немагнитных колесах. Важную роль играет расстояние между контролируемой поверхностью стыка и полюсами.

    Подвижные намагничивающие приспособления используются для контроля сварных соединений малых и средних труб с диаметром от 100 до 1020 мм. Толщина стенки не должна быть более 16 мм. Если необходимо проконтролировать качество сварного стыка на трубе меньшего размера, то следует применять намагничивающие клещи или вилки.

    Для проведения контроля качества сварного стыка труб большего диаметра в пределах от 1220 до 1420 мм применяется аппарат, который обладает шаговым перемещением. Называется такое устройство МУН-1. Он позволяет контролировать стыки из металла толщиной до 20 мм. Оснащается пультом дистанционного управления, благодаря которому контролируется процесс и происходит управление аппаратом. Для контроля качества стыка разных диаметров в этом диапазоне используются специальные сменные башмаки.

    Для проведения проверки качества, строительные организации обращаются в центр строительного контроля

    Если требуется проконтролировать соединение труб диаметром 1420 мм и со стеной до 25 мм, то необходимо использовать установку типа УМД-142. Она монтируется на специальные механизированные сварочные базы. Если необходимо выполнить контроль качества сварки стыков трубопровода на трассе, то для этих целей применяется мобильная лаборатория ЛПМ-К. В качестве намагничивающего устройства используется кольцевой магнит. Он позволяет полностью охватить всю поверхность стыка.

    Для работы намагничивающего устройства, применяемых в контроле стыков больших труб, требуется мощный источник питания. Применяются мобильные станции типов СПП-1 и СПА-1. Также допускается возможность использования сварочных аппаратов, но в таком случае необходимо использовать реостат. Для записи данных раньше использовалась лента шириной 35-70 мм на триацетатной или лавсановой основах типов МК-1 и МК-2. Протягивалась она моторами над намагничиваемым участком. Аппарат имел лучевую трубку, на которой отражались одиночные импульсы намагничивания.

    В качестве средств визуального отображения информации использовались МД-30Г, МД-11Г, МГК-1 и МДУ-2У.

    Дефектоскопия сварных соединений труб на газо-нефтепроводах

    Контроль сварных соединений рентгеновским излучением

    Одним из самых распространенных на сегодняшний день методов контроля качества сварных соединений является рентгеновское излучение. Его также называют рентгено- и гаммаграфическим. Особенность этого метода заключается в том, что гамма-лучи способны проходить сквозь сварное соединение. Для фиксации результатов применяется специальная радиографическая пленка. В результате действия гамма-лучей на пленке возникает скрытый для обычного зрения рисунок. Его можно увидеть только после проявления и закрепления, как и в случае с фотообработкой. С целью лучшей проявки дефектов применяются концентраторы из металлических или флюоресцентных экранов.

    Известно, что рентгеновские лучи являются теми же электромагнитными колебаниями, имеющие определенную частоту. Принимает излучения специальная рентгеновская трубка. Она оснащена двумя электродами, расположенными в баллоне. Процесс образования излучения возникает в момент торможения электронов, которые задерживаются анодом. При этом электрон принимает кинетическую энергию, равную E=eU. Когда достигается минимальная длина волны Emax=hc/λ0.

    электронов на аноде, генерируется максимальное количество рентгеновского излучения. Учитывая, что h – постоянная Планка и равна 6,625∙10-34 Дж/с, с – это скорость света в вакууме, а е – заряд электрона равный 1,602∙ 10-19 Кл, то приравняв Е и Emax, можно определить минимальную длину волны λ0 и она будет равна

    Если увеличивать напряжение на аноде, то длина волны становится меньше. В результате излучается спектральный состав рентгеновского излучения. В результате этого увеличивается максимальная энергия непрерывного спектра. Если изменять ток анодной трубки, то аналогично изменяется и интенсивность рентгеновского излучения. Дозу облучения можно определить из произведения анодного тока и длительности времени, на протяжении которого происходило воздействие.

    Рентгеновская трубка обладает очень малым КПД, которые не превышает 2% от всей энергии электронов. Все остальное уходит на нагрев, который выводится специальной средой наружу. Для регистрации рентгеновского излучения, прошедшего через сварное соединение, используется эмульсия специальной радиографической пленки.

    1. Радиографическая техническая плёнка Р8Ф; 2. Рентгеновская плёнка Agfa D5

    Так как любая используемая для контроля качества сварки радиографическая пленка не имеет идеального участка на кривой, то контрастность и градиент определяется индивидуально из соотношения γd = dD/(d lg D). D – Плотность почернения пленки. Если используется безэкранная пленка, то плотность почернения в них Dб определяется пропорциональностью проявленных пятен. Экспозиция X при этом определяется количеством квантов, которые прошли через пленку. В таком случае Dб = Dmaх[l-exp(-kX], k – чувствительность пленки, а Dmaх является величиной максимальной плотности почернения. Если используется экран, то уравнение будет иметь вид:

    Пленки обладают, так называемой, спектральной чувствительностью. Это свойство указывает на способность получать разные плотности почернения с одинаковой экспозицией, но разной дозой. Спектральная чувствительность обозначается буквой Q и определяется по формуле

    Все радиографические пленки характеризуются разрешающей способностью. Она определяет количество различимых штриховых линий на расстоянии 1 мм. Наиболее качественными в этом плане являются пленки типов РТ-4 М и РТ-5. Они также являются мелкозернистыми. Контроль с использованием усиливающих кранов позволяет получить более существенную картину, но при этом важно правильно выбрать материал для изготовления экрана, которым может быть олово, свинец, вольфрам. Материал выбирается в зависимости от величины питающего напряжения до 100 кВ и свыше 100 кВ.

    В промышленных масштабах для проведения контроля качества сварного шва используют пленку РТ-СШ. В качестве экрана применяется лавсан с покрытием из тяжелых элементов, заменяющих свинец. Выделяют 4 класса рентгенографических снимков.

    Контроль сварных соединений трубопроводов гамма-излучением

    Процесс контроля качества сварных соединений на трубах является важным этапом при прокладке коммуникаций с использованием стальных труб. В основном, применяется метод сваривания, так как он позволяет достичь наибольших показателей герметичности, а, соответственно, и надежности эксплуатации оборудования. Для определения качества сварки используются разные методы, и каждый имеет свои особенности, так как позволяет определять скрытые дефекты в металле любой толщины.

    Есть разрушающие и неразрушающие технологии, которые позволяют получать разные данные. Одним из таких методов является процесс облучения гамма-излучением. Это ничто иное, как пучок энергии, который формируется во время распада ядер в различных веществах. Притом используются как натуральные, таки и искусственно произведенные компоненты. Для получения такого излучения необходим соответствующий источник. Таковым выступает радиоактивный изотоп тулии 170, индия 192 и цезия 137. Также нередко используется изотопы стронция 90, европия 152 и 155 и селена 75.

    Особенность процесса распада ядер является нерегулируемым процессом, но при этом реакция относится к статической. Чтобы получить необходимый результат, нужно регулировать интенсивность распада, тем самым, изменяя количество радиоактивных веществ, которые вступили в реакцию. Здесь работает экспоненциальный закон. Формула зависимости активности распада имеет следующий вид:

    Чтобы определить активность радиоактивных веществ, было введено понятие полураспада. Оно характеризует время, за которое в среде с определенными параметрами происходит распад ровно половины всех имеющихся ядер. Соответственно, для каждого вещества имеется свой конкретный срок. При этом степень активности веществ определяется из количества свободных атомов, которые могут вступать в реакцию полураспада. Эта величина также называется скоростью распада, которая указывает на общий результат реакции.

    Для экспоненциальной дозы гамма и рентгеновского излучений характерно наличие энергии квантового излучения. Она преобразуется в кинетическую, которая передается заряженными частицам, которые находятся в среде атмосферного воздуха. Мощность экспозиционной дозы определяется из дозы, которая была поглощена за единицу времени.

    Читайте также:  Как это труба по условному проходу

    Единицей измерения этой характеристики являются амперы на килограмм. Также для расчетов используется соотношения рентген в секунду. Мощность определяется произведением мощности гамма-излучения без поглотителя на отношение дозового фактора накопителя к силе. При этом экспонента берется в степени из произведения коэффициента относительного уменьшения и площади поглотителя. Формула расчета данной характеристики выглядит следующим образом:

    В данной формуле применены следующие символы:

    • P0 – мощность экспозиционной дозы без поглотителя;
    • µ — коэффициент уменьшения интенсивности излучения;
    • B – дозовый фактор накопления.

    Ионизирующее действие сравнивается по гамма-эквиваленту препарата, которые возникают при в результате ионизации. Эталонным является именно излучение радия, потому что оно отвечает основным законам. В результате опытных испытаний было доказано, что 1 г радия способен создавать экспозиционную дозу до 2,13х10-3 Кл/кг.

    При этом обязательно используется платиновый фильтр, толщина которого составляет не менее 0,5 мм, а расстояние, на котором происходит измерение, составляет 1 см. Создаваемая экспозиционная доза одним граммом радия называется грамм-эквивалентом. При этом интенсивностью излучения называется отношение потока квантов излучения ко времени, за которое происходило облучение.

    Особенности выполнения контроля качества сварных швов с использованием гамма-излучения

    Для выполнения анализа сварного шва в трубах применяются специальные переносные устройства, называемые гамма-дефектоскопы. В них применяются специальные защитные радиационные головки. Их наличие обязательно, так как в процессе работы излучателя создается опасная, которая может привести к проблемам со здоровьем.

    Контроль качества сварки проводится путем открытия затвора головки на небольшой угол. Созданного пучка излучения должно быть достаточно для просвечивания металла насквозь. Такие приборы получили название дефектоскопов шлангового типа.

    Гаммарид 192-120, 170-400 — характеристики

    Также применяется, так называемый, гаммарид-23. Данное устройство обладает способностью работать от нескольких источников излучения на основе цезия 137 и иридия 192. Обработка сварного шва выполняется из конического наконечника, испускаемого из закрытого контейнера. Аппарат оснащается дефектоскопами Гаммарид-20, Гаммаридд-25, Гаммарид-25М и др. Также можно выполнять проверку качества сварных соединений трубопровода на трассе, для этого применяются передвижные аппараты «Магистраль» и «Магистраль-1». С помощью подобных устройств можно обследовать трубы с диаметром 1420 мм, а толщина металла при этом может составлять все 40 мм.

    Особенность подобных приборов состоит в том, что они могут использоваться не только снаружи, но и нутрии трубопровода, тем самым, позволяя проанализировать качество соединения с обратной стороны. При этом погружать в трубу активный прибор можно на расстояние до 1,5 км. Работает данная аппаратура только в составе с системой АКП-141.

    Другое оборудование для контроля при помощи гамма-излучением

    Также применяется установка «Парус-3М» для проведения контроля качества сварных швов на трубах. Они передвигают излучатель со скоростью 15 м в минуту за счет встроенного двигателя.

    При этом в качестве излучателя может быть использован любой вариант. Чтобы получить более полную картину шва, регистратор перемещается по кругу. На трассах проверяют качество сварки труб мобильными лабораториями типа РМЛ-2В и ВЛК-2.

    Что получается?

    В ходе проведения контроля качества немаловажное значение имеет чувствительность Wотн. Она определяется по картинке, которая была сформирована в процессе анализа. Для выявления дефектов используются канавочные эталоны. С его помощью можно определить чувствительность по формуле:

    В данной формуле учтены всевозможные факторы, которые могут повлиять на ход проведения контроля качества сварного соединения. Фактором наличия дефектов является общая нерезкость. Она, как правило, указывает на наличие ступенчатых переходов. В таком случае нерезкость рассеяния определяется по формуле: uр=uВgб. Где uВ – внутренняя нерезкость. а общая определяется по формуле

    Для проверки качества сварного шва толстостенных труб в формулу необходимо вместо uВ подставить uР. Полученный контраст изображений является фактором наличия дефектов. Его можно определить расчетным путем по формуле:

    При проведении практических измерений относительная чувствительность определяется по форму:

    В уравнении применены обозначения:

    • h – минимальная глубина канавки дефектоскопа;
    • δ1 – показатель толщины основного металла;
    • δ2 – размер эталона.

    Измерение параметров сварного соединения выполняется снаружи. На поверхности монтируется источник, а с обратной стороны также снаружи размещается лента, на которой будут фиксироваться показания. Таким способом можно просвечивать трубы с размером меньше 400 мм и на расстоянии от шва до 20 мм.

    Контроль качества сварных швов при помощи ультразвуковой дефектоскопии

    Ультразвуковая дефектоскопия применяется для контроля качества сварных соединений с толщиной стенки труб от 20 мм. Данный метод по сравнению с другими неразрушающими технологиями обладает множеством преимуществ. Суть измерения состоит в использовании ультразвуковых волн на разных частотах. Как правило, используются значения: 0.8, 1.8, 2.5, 3.5 МГц. Особенность ультразвуковых волн на таких пределах колебаний состоит в их высокой проникающей способности в глубину металла.

    В качестве резонаторов колебаний применяется кварц или сегнетовая соль. С их помощью можно мгновенно преобразовать энергию электрических колебаний в механическую и в обратном направлении. Естественно, для их возникновения к резонатору подводится питающий ток с определенной частотой. Существует зависимость мощности резонатора от площади пластинки и квадрата амплитуды напряжения питания.

    После введения импульсов в упругую среду формируются волны, которые подразделяются на параллельные и поперечные. Для определения качества сварных соединений применяются исключительно поперечные волны. Резонатор или искатель создает и водит волны в изделие под углом 29-70 градусов в зависимости от ряда факторов. Это предусмотрено для непрерывного контроля без изменения питающего тока от генератора.

    В ходе проведения измерений определяется акустическое сопротивление, которое зависит от плотности среды и скорости звука. При этом коэффициент отражения R будет определяться по формуле:

    В вычислениях применялись показания акустических сопротивлений в обеих сред.

    Волна, проходя через сварной шов, отражается от образовавшейся прослойки воздуха в местах некачественного провара. Естественно, она отражается и распространяется в разных направлениях, что фиксируется специальными датчиками.

    Важно выполнить установку дефектоскопа таким образом, чтобы между ним и стальной трубой не оставалось воздуха. В противном случае результат измерений будет сильно искажен. Устранить карманы с воздухом можно обильным смазыванием глицерином или жидкими маслами.

    Ультразвуковой контроль сварных швов

    Проверка на практике

    На практике применяется контроль качества сварки трубопроводов эхоимпульсным методом. Искатель в устройстве создает звуковые колебания, которые направляются под определенным углом к месту шва. Когда волны наткнутся на дефект, то отразятся от него и направляются на принимающую пластину.

    Колебания механические преобразуются в электрические, которые, затем, проходя через усилитель, поступают в электронно-лучевую трубку. В результате измерений луч различным образом отклоняется, что и является фактором наличия дефектов. По виду отклонения луча определяют вид дефекта в сварном шве.

    В составе ультразвукового прибора также имеется устройство, которое показывает глубину, на которой находится дефект. Современные модели подобного оборудования оснащены ЖК-индикаторами, на которые выводится вся необходимая информация.

    Чтобы получить наиболее достоверные значения, необходимо правильно расположить искатель. Угол падения луче должен быть выбран таким образом, чтобы его ось пересекала шов ровно по центру и проникала на глубину, которая была бы равна половине толщины металла.

    Источник

    Adblock
    detector