Меню

Когда труба является гидравлически гладкой

Гидравлически гладкие и шероховатые трубы.

Шероховатость внутренней поверхности труб может быть различной. Помимо выступов с неодинаковыми размерами и формой может быть и регулярная шероховатость обусловленная технологией. В качестве характеристики шероховатости выбирают среднюю высоту выступов шероховатости Δ. Соотношение между высотой выступов шероховатости и толщиной вязкого подслоя определя\ет структуру потока.

Турбулентный режим в зависимости от числа Re разделяется на область гидравлически гладких, область шероховатых труб и переходную область, это разделение является условным, так как толщина δ ламинарного слоя зависит от числа Re

где δ – высота ламинарного подслоя.

d – диаметр трубы(мм) Re – число Рейнольдса λ- коэффициент сопротивления, δ – толщина д подслоя(мм)
100 4000 0,02 5
100 10 5 0,02 0,2

При увеличении числа Re толщина вязкого слоя, если принять одинаковыми коэффициент λ уменьшается и гидравлически гладкая труба может стать шероховатой, при этом средняя высота абсолютной шероховатостей на внутренней поверхности трубы не меняется и обычно составляет для новых труб Δ =0,1мм, для старых труб до Δ =1-2 мм.

В этих областях коэффициент λ имеет разные зависимости.

1. Δ δ. Гидравлически шероховатые трубы. Если высота шероховатости Δ больше высоты вязкого подслоя δ, все неровности выходят в пределы турбулентного ядра, поток обтекает выступы с отрывом, сопровождающимся перемешиванием частиц. Потери на трение зависят только от шероховатости, число Re не влияет на потери.

3. Δ≈δ Область переходная. Высота шероховатостей приблизительно равна толщине вязкого подслоя. На коэффициент сопротивления влияют и шероховатости и число Re.

6. Экспериментальное изучение коэффициента λ при равномерной шероховатости. Опыты Никурадзе

Сотрудник Прандтля в Геттингене Никурадзе выполнил опыты по определению сопротивления труб с искусственно созданной равномерно распределенной зернистой шероховатостью на внутренней поверхности.

Иван Ильич Никурадзе (1894-1979 гг.) окончил Тифлисский университет и в составе группы студентов был направлен в 1919 г. в Гетингенский университет (Германия), в 1923 г. успешно защитил магистерскую диссертацию, руководителем его был Л.Прандтль. К 1926 г. И.И.Никурадзе получил советский паспорт и написал письмо ректору Тбилисского университета с просьбой принять его на работу. Но после 1926 г. И.И. Никурадзе решил не возвращаться в Советскую Россию.

В 1923 г. И. И.Никурадзе провёл в лаборатории Л.Прандтля блестящее экспериментальное исследование гидравлических потерь на трение по длине труб, получившее всемирную известность и признание как опыты и графики Никурадзе. В 1934 г. первичная ячейка нацистов в университете обвинила Никурадзе в шпионаже в пользу СССР, и Л. Прандтль был вынужден уволить Никурадзе с должности начальника отдела своей лаборатории. После этого события он работал профессором в технических университетах Германии в области гидродинамики.

Читайте также:  Клей тангит для труб пвх 250

Шероховатость Никурадзе была получена путем приклейки песчинок определенного размера, полученного просеиванием песка через специальные сита. Сначала внутренние стенки труб покрывались лаком, затем труба заполнялась песком определенной зернистости, с диаметром равным средней неровности ∆, песчинки приклеивались к стенкам однородным слоем, потом опять покрывалась лаком и высушивалась.

Испытания были проведены в диапазоне относительных шероховатостей ∆/r от 1/500 до 1/15, где ∆ — высота бугорков, r – радиус трубы, при числах Рейнольдса Re=500 – 10 6 .

Источник

Вопрос № 39. Объясните понятие гидравлически гладких и шероховатых труб. Может ли одна и та же труба быть гидравлически гладкой и гидравлически шероховатой? В каком случае?

Потери напора по длине потока могут весьма существенно зависеть от характеристик шероховатости стенок трубы, в которых происходит движение. Поверхность стенок, ограничивающих поток, всегда отличается от идеально гладкой поверхности наличием выступов и неровностей. Величина и форма этих выступов зависят от материала стенки, от его обработки, условий эксплуатации, в процессе которой возможна коррозия, могут выпасть и осесть на стенках твердые частицы наносов и т.п. Стенки труб покрытые однородными бугорками со средней абсолютной высотой выступа шероховатости, обозначают Δ.

В зависимости от того, как относятся размеры выступов шероховатости и толщина ламинарной пленки, все трубы могут быть при турбулентном режиме движения подразделены на три вида.

Если высота выступов шероховатости Δ меньше, чем толщина ламинарной пленки (Δ

Для последующих практических расчетов можно принимать ориентировочные значения высоты выступа шероховатости для труб: трубы новые стальные и чугунные — Δ ≈ 0,45 — 0,50 мм, трубы, бывшие в эксплуатации (так называемые «нормальные»), Δ ≈ 1,35 мм.

Таким образом, зная высоту выступа шероховатости и определив толщину ламинарной пленки, можно, сравнив их размеры, определить, гидравлически гладкой или гидравлически шероховатой будет стенка, ограничивающая поток в трубе.

Вопрос № 40.Опыты Никарудзе. Основные линии и области (зоны) сопротивления на графике зависимости коэффициента сопротивления трения от числа Рейнольдса при разных значениях относительной шероховатости.

При исследовании во­проса об определении коэффициента потерь напора на трение в гидравлически гладких трубах можно прийти к мнению, что этот коэффициент целиком зависит от числа Рей-нольдса. Известны эмпирические формулы для определения коэффициента трения, наибо­лее широкое распространение получила формула Блазиуса:

По данным многочисленных экспериментов формула Блазиуса подтверждается в пределах значений числа Рейнольдса от до 1-10 5 .

И. И. Никурадзе испытал на сопротивление ряд труб с искусственно созданной шероховатостью на их внутренней поверхности. Шероховатость была получена путем приклейки песчинок определенного размера, полученного просеиванием песка через специальные сита. Тем самым была получена равномерно распределенная зернистая шероховатость.

Читайте также:  Укладка канализационных труб в землю своими руками частном доме

Первая область — область малых Rе и /г0, где коэффициент от шероховатости не зависит, а определяется лишь числом Rе; это область гидравлически гладких труб. Она не имеет места для максимальных значений шероховатости в опытах И. И. Никурадзе.

Во второй области коэффициент т зависит одновременно от двух параметров — числа Rе и относительной шероховатости.

Третья область — область больших Rе и /г0, где коэффициент не зависит от Rе, а определяется лишь относительной шероховатостью. Эту область называют областью автомодельности или режимом квадратичного сопротивления, так как независимость коэффициента т от Ве означает, что потеря напора пропорциональна скорости во второй степени

Чтобы лучше уяснить эти особенности сопротивления шероховатых труб, необходимо учесть наличие ламинарного слоя

Как указывалось выше, при увеличении Ве толщина ламинарного слоя л уменьшается, поэтому для турбулентного потока при малых Rе толщина ламинарного слоя больше высоты бугорков шероховатости, последние находятся внутри ламинарного слоя, обтекаются плавно (безотрывно) и на сопротивление не влияют. По мере увеличения Rе толщина л уменьшается, бугорки шероховатости начинают выступать за пределы слоя и влиять на сопротивление. При больших Rе толщина ламинарного слоя становится весьма малой, а бугорки шероховатости обтекаются турбулентным потоком с вихре-образованиями за каждым бугорком; этим и объясняется квадратичный закон сопротивления, характерный для данной области.

График И. И. Никурадзе позволяет построить примерную зависимость от Ве допустимой шероховатости, т. е. такого максимального значения, при котором шероховатость трубы еще не влияет на ее сопротивление. Для этого следует взять те точки на графике (см. рис.), в которых кривые для шероховатых труб начинают отклоняться от прямой В для гладких труб. Очевидно, что с увеличением Rе значение допустимой шероховатости уменьшается.

I ламинарное течение жидкости (прямая А),

II турбулентное течение жидкости в гидравлически гладких трубах (прямая В),

III переходная область течения жидкости,

IV квадратичная область течения жидкости,

Дата добавления: 2015-04-18 ; просмотров: 373 ; Нарушение авторских прав

Источник

Гидравлически гладкие и шероховатые трубы

Состояние стенок трубы в значитель­ной мере влияет на поведение жидкости в турбу­лентном потоке. Так при ламинарном движении жидкость движется медленно и плавно, спокойно обтекая на своём пути незначительные препятст­вия. Возникающие при этом местные сопротивления настолько ничтожны, что их величи­ной можно пренебречь. В турбулентном же потоке такие малые препятствия служат ис­точником вихревого движения жидкости, что приводит к возрастанию этих малых мест­ных гидравлических сопротивлений, которыми мы в ламинарном потоке пренебрегли. Та­кими малыми препятствиями на стенке трубы являются её неровности. Абсолютная вели­чина таких неровностей зависит от качества обработки трубы. В гидравлике эти неровно­сти стенок трубы называются выступами шероховатости.

Читайте также:  Труба с внутренним напылением

Шероховатость характеризуется величиной и формой различных выступов и неровностей, имеющихся на стенках трубы (рис. 5.6).

Рис. 5.6. К понятию абсолютной шероховатости, гидравлически гладких и шероховатых труб

В качестве основной характеристики шероховатости служит абсолютная шероховатость — , которая равна средней высоте бугорков шероховатости. Отношение абсолютной шероховатости к диаметру трубопровода называется относительной шероховатостью — .

В зависимости от того, как относятся размеры выступов шерохо­ватости и толщина ламинарной пленки, все трубы могут быть при тур­булентном режиме движения подразделены на три вида.

1) Гидравлически гладкие трубы, т.е. толщина ла­минарного слоя больше высоты выступов шероховатости. В этом случае шероховатость стенок не влияет на характер движения и соответственно потери напора не зави­сят от шероховатости.

2) Гидравлически шероховатые трубы, т.е. толщина ла­минарного слоя меньше высоты выступов шероховатости. В этом случае шероховатость стенок влияет на характер движения и соответственно потери напора зави­сят от шероховатости.

3) В третьем слу­чае, являющемся промежуточным между двумя вышеуказанными, аб­солютная высота выступов шероховатости примерно равна толщине ламинарной пленки — d » D. В этом случае трубы относятся к переходной об­ласти сопротивления.

Толщина ламинарной пленки определяется по формуле

. (5.7)

Итак, различают стенки гидравлически гладкие и шероховатые трубы. Такое разделение является условным, поскольку, как следует из формулы (5.7), толщина ламинарной пленки обратно про­порциональна числу Рейнольдса (или средней скорости). Таким обра­зом, при движении вдоль одной и той же поверхности с неизменной вы­сотой выступа шероховатости в зависимости от средней скорости (чис­ла Рейнольдса) толщина ламинарной пленки может изменяться. При увеличении числа Рейнольдса толщина ламинарной пленки dуменьша­ется и стенка, бывшая гидравлически гладкой, может стать шерохова­той, так как высота выступов шероховатости окажется больше толщи­ны ламинарной пленки и шероховатость станет влиять на характер движения и, следовательно, на потери напора.

Для практических расчетов можно принимать ори­ентировочные значения высоты выступа шероховатости для труб: тру­бы новые стальные и чугунные — Δ ≈ 0,45 — 0,50 мм, трубы, бывшие в эксплуатации (так называемые «нормальные»), Δ ≈ 1,35 мм.

Таким образом, зная высоту выступа шероховатости и определив толщину ламинарной пленки, можно опреде­лить гидравлически гладкой или гидравлически шероховатой будет стенка, ограничивающая поток в трубе.

Источник

Adblock
detector