Меню

Экраны из гладких труб с опорами что это

ФЕРм 06-01-004-05

Экраны из гладких труб с опорами, подвесками и другими креплениями, поставляемые: отдельными деталями, барабанных котлов, работающих на газомазутном топливе, паропроизводительностью 35-75 т/ч, давлением 1,4-3,9 МПа

ФЕДЕРАЛЬНАЯ ЕДИНИЧНАЯ РАСЦЕНКА ФЕРм 06-01-004-05

Наименование Единица измерения
Экраны из гладких труб с опорами, подвесками и другими креплениями, поставляемые: отдельными деталями, барабанных котлов, работающих на газомазутном топливе, паропроизводительностью 35-75 т/ч, давлением 1,4-3,9 МПа 1 т
Состав работ
Не предусмотрен

Расценка учитывает ПЗ работы на 2000 год (Московские цены), рассчитаны по ГЭСН образца 2014 года с дополнениями 1. К стоимости нужно применять индексацию перевода в текущие цены.

Вы можете перейти на страницу этого же норматива, который рассчитан по ГЭСН редакции 2020 года

Всего (руб.) Оплата труда рабочих Эксплуатация машин Оплата труда машинистов Стоимость материалов Трудозатраты (чел.-ч)
7402,2 1488,88 3433,52 340,92 2479,8 148

ВСЕГО ПО РАСЦЕНКЕ: 7 402,20 Руб.

Посмотрите стоимость этого норматива в редакции 2020 года открыть страницу

Посмотрите ресурсную часть расценки в нормативе ГЭСНм 06-01-004-05

При использовании в смете, расценка требует индексации для перевода в текущие цены.
Расценка составлена по нормативам ГЭСН-2001 редакции 2014 года с дополнениями 1 в ценах 2000 года.

Источник

Конструкции топочных экранов

Топочные экраны находятся в зоне наиболее высоких температур газов и требуют тщательного конструктивного выполнения для обеспечения надежной работы металла труб. По конструкции различают экраны гладкотрубные, в которых трубы расположены вдоль стен топки с небольшим зазором 4–6 мм (рис. 1, а) и газоплотные, которые могут быть выполнены двух типов: либо из таких же гладких труб, с вваренными между ними проставками шириной 6–12 мм (рис. 1, б), либо с применением специальных плавниковых труб, сваренных между собой (рис. 1, в). Экраны из таких сварных между собой панелей образу монолитную цельносварную газоплотную конструкцию. Их называют мембранными.

Для образования в топке зоны устойчивого воспламенения малореакционных топлив, требующих высокой температуры для их интенсивно горения, экраны всех типов на соответствующих участках покрывают огнеупорной массой с закреплением ее на приваренных к трубам шипах. Такие экраны называют футерованными экранами (рис. 1, г, д).

Рис. 1. Типы экранирования топки:

а – гладкотрубный экран, б – то же с вварными проставками (мембранный),
в – газоплотный экран из плавниковых труб, г – футерованный
гладкотрубный экран, д – футерованный мембранный экран;
1 – труба, 1’ – плавниковая труба, 2 – огнеупорный бетон, 3 – тепловая изоляция, 4 – уплотнительный слой (обмазка, металлический лист),
5 – металлическая проставка, 6 – приварные шипы, 7 – огнеупорная масса

Гладкотрубные экраны применяют в паровых котлах всех систем, работающих под разрежением газового тракта. При естественной циркуляции в целях повышения надежности движения рабочей среды в трубах топочные экраны располагают почти исключительно вертикально и в отдельных случаях круто наклонно. Парообразующие поверхности нагрева прямоточных котлов и котлов с многократной принудительной циркуляцией можно ориентировать в пространстве любым способом, выполняя топочные экраны вертикальными, горизонтальными и подъемно-опускными, поскольку здесь есть возможность организации движения пароводяной смеси со скоростью, предотвращающей нарушение гидравлических режимов.

Вертикальные топочные экраны котлов с естественной циркуляцией. Обычно топочные экраны выполняют в виде нескольких вертикальных панелей, которые полностью закрывают все стены топки и имеют только подъемное движение рабочей среды (рис. 2, а) Трубы имеют наружный диаметр 83–76–60 мм с толщиной стенки 3,5–5 мм, причем для котлов высокого давления (10 и 14 МПа) используют трубы меньшего диаметра, но с увеличенной толщиной стенки (до 5 мм). Экранные трубы секции, как правило, объединяются нижним и верхним коллекторами, связанными с барабаном котла опускными и отводящими трубами большего диаметра, чем экранные (рис. 2, б). Сечение опускных и отводящих труб составляет 30–50 % сечения подъемных труб каждой секции. Плотность экранирования стен характеризуется отношением шага труб к диаметру и составляет σ = 1,07–1,1.

Экранные трубы заднего экрана, в отличие от других экранов, должны пересечь газовое окно на выходе из топки в горизонтальный газоход. Для обеспечения достаточного прохода газов между трубами в зоне газового окна располагают разреженные отводящие трубы либо разводят трубы заднего экрана в 3–4 ряда (эта конструкция получила название фестон). Для обеспечения необходимой аэродинамики газов в топочном объеме в ряде конструкций экранов топки выполняют выступы экранных секций внутри объема топки: нижние симметричные выступы на 1/4 глубину топки с каждой стороны для выделения зоны горения и создания области жидкого шлакообразования и верхний выступ заднего экрана на 1/3 глубины топки – для создания равномерного расхода газов по высоте выходного газового окна (рис. 2, в).

Крепление экранных секций делается вверху: верхний коллектор опирается на горизонтальные балки верхнего (потолочного) перекрытия каркаса котла. Тепловое расширение экранной секции предусмотрено вниз. Нижние коллектора имеют свободу вертикальных перемещений в пределах расчетного теплового расширения экрана (60–100 мм).

В последние годы применяют конструкции экранов с натрубной обмуровкой. Такая обмуровка стен топки оказалась достаточно легкой и может быть прикреплена непосредственно к трубам экрана на котлостроительном заводе после сборки секции экрана. Таким образом, на монтажно-сборочную площадку строящейся ТЭС поступают уже готовые секции топки. После их монтажа необходимо только уплотнить швы между секциями.

Рис. 2. Схема экранов пылеугольного котла с естественной циркуляцией:

Читайте также:  Диаметр выхлопной трубы бмв е36 м43

а – секция фронтового экрана, б – циркуляция в экранных секциях топки,
в – выполнение нижнего выступа экранных труб;

1 – барабан, 2 – необогреваемые опускные трубы, 3 – фронтовой экран,
4 – отводящие трубы, 5 – задний экран, 6 – секции бокового экрана,
7 – разреженные отводящие трубы заднего экрана, 8 – развилка труб (тройник),
9 – дроссельная шайба в трубе (показана условно),
10 – скоба (гребенка) для крепления труб секции

Для повышения прочности экрана (за счет разности давлений в топке и снаружи стена топки воспринимает давление в 5–10 т) и исключения вибрации при пульсирующем давлении в топке его укрепляют установкой поясов жесткости, которые жестко связаны с трубами экрана, охватывают по периметру всю топку через 3–4 м высоты и перемещаются вместе с трубами при тепловом расширении. Пояс жесткости обеспечивает поддержание заданного шага труб.

В котлах большой мощности в отдельных случаях по середине топки устанавливают двусветный экран (рис. 3, а), разделяющий топку две полутопки. Такой экран увеличивает тепловос­принимающую поверхность без изменения сечения топки, интенсивно охлаждает топочные газы, благодаря чему можно уменьшить высоту топки. Трубы этого экрана по высоте нельзя закрепить к каким-либо неподвижным внешним конструкциям, между собой они скрепляются в нескольких местах по высоте путем сварки через пруток (рис. 3, б, в). Для выравнивания давления в обеих полутопках в двусветном экране делают окна.

Рис. 3. Выполнение двусветного экрана:

а – установка экрана в топке, б – общий вид экрана, в – узел сварки труб экрана;

1 – барабан, 2 – двусветный экран, 3 – горелки, 4 – пояса жесткости, 5 – выход жидкого шлака, 6 – шлаковая ванна, 7 – ширмы пароперегревателя, 8 – «окно» для выравнивания давления, 9 – тройник, 10 – труба, 11 – приварной пруток,
12 – ремонтный лаз, А-А – уровни сварки труб прутками

Топочные экраны прямоточных котлов. В прямоточных котлах кратность циркуляции рабочей среды в экранах равна единице, в то время как при естественной циркуляции она составляет 10-20. Кроме того скорость рабочей среды при прямоточном принудительном движении примерно в 2 раза выше, чем в естественной циркуляции. Поэтому необходимое сечение для пропуска рабочей среды прямоточного котла в 20-40 раз меньше, чем в естественной циркуляции при той же паропроизводительности. Здесь весь поток рабочей среды проходит только через 2–4 параллельных секции, называемые лентами (панелями), состоящими из 40–50 труб и имеющими каждая ширину 2–3 м.

Поскольку движение рабочей среды в этих экранах принудительное, то уменьшение диаметра труб за счет роста сопротивления не скажется на снижении скорости движения, как это имеет место при естественной циркуляции, где дальнейшее уменьшение диаметра труб менее 60 мм нежелательно. Топочные экраны прямоточных котлов выполняют из труб диаметром 32–42 мм с толщиной стенки 4–6 мм. Уменьшение диаметра труб по сравнению с естественной циркуляцией дает экономию металла при экранировании стен топки до 30 %. Однако, уменьшение диаметра труб при сохранении массовой скорости потока требует увеличения числа параллельных труб. Оба обстоятельства: увеличение тепловой мощности котла и уменьшение диаметра труб приводят к заметному увеличению ширины ленты, а чем шире лента, тем больше влияния неравномерности обогрева параллельных труб, образующих ленту. Поэтому, желая сохранить малый диаметр труб, в мощных паровых котлах выполняют параллельно несколько лент (заходов), при этом ширина каждой ленты остается небольшой. Получается два–четыре параллельных потока рабочей среды с независимым регулированием расхода и температуры по каждому потоку.

Газоплотные сварные экраны находят широкое применение
в современных конструкциях котлов, они имеют на 10–15 % меньшую массу металла на единицу лучевоспринимающей поверхности по сравнению с гладкотрубными. Шаг труб здесь увеличен до σ = 1,4–1,45, так как между трубами ввариваются проставки шириной 14–16 мм, соответственно сокращается число труб, а суммарное сечение их подбирают по условиям обеспечения необходимой массовой скорости рабочей среды. Эти экраны находятся в лучших условиях работы, так как часть поглощенного плавниками (проставками) тепла передается тыльной стороне труб благодаря растечке, что превращает эту часть труб в активную поверхность нагрева. В таком экране исключен выход отдельных труб из плоскости экрана и ухудшение по этой причине их температурного режима.

С целью уменьшения периметра топки газоплотные топочные экраны проектируют на повышенную удельную паропроизводи­тельность фронта 22–35 кг/с пара на 1 м ширины топки (при мощности котла 300–800 МВт). При этом глубину топочной камеры увеличивают, приближая к квадратному сечению топки, имеющему при одинаковых теплонапряжениях минимальный периметр. В негазоплотных топках удельная паропроизводительность фронта на 12–15 % меньше, а отношение ширины к глубине топки около 2:1.

Камеры интенсивного горения твердого топлива (при обеспечении жидкого шлакоудаления), циклонные топки, ограждают футерованными экранами (рис. 1, г, д).

Для создания футерованного экрана приваривают к трубам контактной или дуговой сваркой шипы (прутки) диаметром 10 и высотой 15-25 мм. Шипы являются каркасом для крепления набивной массы из огнеупорного материала, отводящим от нее тепло к экранным трубам. Набивная масса в несколько раз уменьшает тепловосприятие экранов. Вместе с тем, теплопроводность должна быть достаточной для отвода воспринимаемого излучения и исключения перегрева футеровки, когда последняя начинает быстро разрушаться.

В качестве новых типов ошиповки применяют оребрение (спиральной накаткой металлической ленты шириной 10-20 мм по наружной поверхности труб). Накатанные трубы чрезвычайно стойки, технологичны, хорошо удерживают набивную массу и удобнее при ремонте экранов.

Читайте также:  Труба тоннель для хомяков

Источник

Выбираем регистры отопления из гладких труб

Обогрев помещений технического назначения требует наличия недорогих и неприхотливых в эксплуатации отопительных приборов. Для таких помещений как склады, мастерские, гаражи и производственные цеха регистры отопления из гладких труб являются просто незаменимыми. Они же очень выручают в помещениях с повышенными требованиями к чистоте, так как легко очищаются от пыли и всевозможных загрязнений.

Принимая решение установить отопительные регистры, необходимо тщательно изучить их технические характеристики и особенности применения. Простейшие конфигурации этих приборов могут быть выполнены самостоятельно, более сложные модели витиеватой формы требуют заводских условий изготовления. Так или иначе, для обеспечения оптимального температурного режима параметры регистров должны определяться на основании теплотехнических расчетов.

Разновидности отопительных регистров

Отопительные регистры представляют собой группу трубопроводов, расположенных параллельно друг другу и сообщающихся между собой. Они могут отличаться по материалу, по форме и конструктивному исполнению.

Материалы для изготовления

Чаще всего регистры отопления изготавливаются из гладких стальных труб по ГОСТ 3262-75 или ГОСТ 10704-91. Применение электросварных труб предпочтительнее из-за способности выдерживать более высокое давление. Тем не менее, на практике довольно распространены также водогазопроводные трубы, которые эксплуатируются не менее успешно. Такие отопительные приборы спокойно выдерживают всевозможные механические повреждения и нагрузки, а также работу с любым теплоносителем.

Существуют еще модели из нержавеющей стали. Их устанавливают в помещениях с повышенными требованиями к эстетичности и долговечности. В связи с повышенной стоимостью применение регистров из нержавеющей стали наиболее оправдано в ванных комнатах. Высокая стойкость к коррозии и разнообразие конфигураций полотенцесушителей из нержавеющей стали позволяют применять их даже в самых современных интерьерах санузлов.

Более эффективными с точки зрения теплоотдачи являются алюминиевые и биметаллические регистры. Они отличаются легкостью и эстетичностью, прекрасно работают в системах индивидуального отопления с хорошо организованной водоподготовкой. В остальных случаях низкое качество теплоносителя приводит к быстрому выходу приборов из строя.

Иногда можно встретить регистры из меди. Обычно их применяют в системах, где основная разводка медная. С ними удобно работать, они весьма симпатичны и долговечны. Кроме того, теплопроводность меди примерно в 8 раз выше, чем стали, что позволяет значительно уменьшить размер нагревательной поверхности. Общий недостаток всех приборов из цветных металлов – чувствительность к условиям эксплуатации – ограничивает сферу применения медных регистров.

Конструктивное исполнение

Наиболее характерные конструкции традиционных стальных регистров можно разделить на 2 типа:

Для первого свойственно горизонтальное расположение трубопроводов и применение вертикальных узких перемычек между ними. Второй предусматривает использование прямых и дугообразных элементов одного диаметра, которые соединяются змейкой с помощью сварки. При использовании нержавейки или цветных металлов трубы просто изгибаются для придания требуемой конфигурации.


Существует три варианта исполнения присоединительных патрубков:

Они могут располагаться как с одной стороны прибора, так и с разных. Выход теплоносителя предусматривается под подачей или по диагонали от нее. Иногда встречается нижнее подключение магистралей, но в этом случае существенно снижается теплоотдача.

В секционных регистрах выделяют 2 вида соединений в зависимости от способа расстановки перемычек:

Регистры из гладких труб могут использоваться как регистры основной системы отопления или как отдельные обогреватели. Для автономной работы внутрь прибора устанавливается ТЭН необходимой мощности и выполняется подключение к сети. В качестве теплоносителя для переносных электрических регистров из стали часто используют антифриз или масло, т.к. оно не замерзает при хранении либо аварийном отключении электроэнергии.

При использовании отдельно от общей системы отопления обязательно дополнительное размещение расширительного бачка в верхней части прибора. Это позволяет избежать повышения давления вследствие увеличения объема при нагреве. Размер емкости подбирается, исходя из возможности вместить около 10 % общего количества жидкости в нагревателе.

Для автономного использования регистра из стальных труб к нему привариваются ножки высотой 200 – 250 мм. Если же прибор является частью контура отопления, его перемещение не планируется и стены достаточно крепкие, то используется стационарное крепление с помощью кронштейнов. Иногда для очень массивных регистров применяют комбинированный вариант установки, т.е. прибор ставится на стойки и дополнительно фиксируется на стене.

Технические характеристики

Технические требования к отопительным приборам, в том числе и к трубчатым радиаторам нормируются ГОСТ 31311-2005. Согласно этому стандарту для их изготовления должны применяться трубы по ГОСТ 3262, ГОСТ 8734, ГОСТ 10705, ГОСТ 10706 с толщиной стенки не меньше 1,25 мм. При этом полотенцесушители разрешается производить из углеродистой стали со стенкой не меньше 3 мм, нержавеющей стали, а также латуни (медно-цинковых сплавов) по ГОСТ 15527.

Допускается использовать и другие материалы, если отопительные приборы будут соответствовать всем положениям стандарта и иметь необходимые характеристики прочности. Конструкция приборов не нормируется и остается на усмотрение производителя при соблюдении основных требований. Это дает полную свободу для творчества и позволяет создавать уникальные дизайнерские конфигурации трубчатых радиаторов, что значительно расширяет сферу их применения.

Характеристики регистров отопления из гладких труб зависят от выбранного материала, размера и конфигурации. Они определяются по специальным формулам, таблицам или материалам производителя.

Рассмотрим основные параметры обычных стальных регистров. Для них характерно применение труб большого диаметра, преимущественно в диапазоне 32 – 219 мм. Они выдерживают рабочее давление до 100 Па (10 кгс/м²). Теплоносителем могут быть как разнообразные жидкости – вода, антифриз, масло – так и пар высокой температуры.

Читайте также:  Заглушка наружная пвх для труб

Имея подробный чертеж, регистр из гладких стальных труб может изготовить своими руками любой мастер с навыками выполнения сварочных работ. Для этого достаточно найти исходный материал, сварочный аппарат и угловую шлифмашинку. Можно также заказать регистр на заводе по индивидуальным чертежам.

Важно! Необходимо выдерживать не только длину, диаметр и количество труб, но и расстояние между ними. Слишком близкое расположение существенно снижает теплоотдачу прибора из-за взаимного влияния элементов. Если же расстояние сделать слишком большим, то высота прибора может выйти огромной и не удобной в установке и использовании. Оптимальным шагом расположения рядов отопительного регистра считается 1,5 радиуса, но не менее 50 мм.


Для получения наилучших результатов все параметры необходимо определять на основании теплотехнических расчетов, исходя из требуемой теплоотдачи и особенностей помещения. Без грамотного расчета даже хорошо сделанный регистр может не справиться с обогревом имеющейся площади.

Расчет регистров отопления из гладких труб

Расчет регистров отопления выполняется для определения количества тепла, поступающего от существующего регистра, а также для определения требуемых размеров прибора для обеспечения необходимой тепловой мощности.

Совет: перед тем как приступать к расчету параметров регистра следует четко определиться с температурным режимом и теплопотерями помещения. Методика их расчета – это отдельная тема, но если нужно качественное отопление, то стоит разобраться в этом вопросе, чтоб потом не переделывать.

Количество тепла (Вт), поступающее от трубы определяется по формуле:

K – коэффициент теплопередачи, Вт/(м 2 · 0 С), принимается в зависимости от материала трубы и параметров теплоносителя;

F – площадь поверхности трубы, м 2 , рассчитываемая как произведение π·d·l,

где π = 3,14, а d и l – диаметр и длина трубы соответственно, м;

∆t – температурный перепад, 0 С, определяемый в свою очередь по формуле:.

где: t1 и t2 – температуры на входе в котел и выходе из него соответственно;

tк – температура в отапливаемой комнате.

На заметку: Для одиночной стальной трубы, наполненной водой, коэффициент теплопередачи к воздуху в общем случае равен 11,3 Вт/(м 2 · 0 С). Для регистра с несколькими рядами ориентировочно принимается понижающий коэффициент 0,9 на каждую нитку.

Значения коэффициентов теплопередачи для стальных гладкотрубных регистров приведены в таблице.

Для определения размеров регистра необходимая тепловая мощность делится на теплоотдачу погонного метра трубы. Это даст примерную суммарную длину ниток. Далее с учетом габаритов помещения принимается ширина прибора и рассчитывается количество рядов.

Совет: так как увеличение диаметров ниток и их количества снижает эффективность прибора, то теплоотдачу регистра следует увеличивать в первую очередь за счет увеличения его длины.

Для более быстрых расчетов можно воспользоваться онлайн-калькулятором, но есть большой риск получения ошибочного результата. Поэтому перед тем как пользоваться автоматическим расчетом, стоит хотя бы один выполнить вручную и сверить результаты.

Незамерзающие жидкости имеют меньшую теплоемкость и отдают меньше тепла, чем вода. Таким образом, регистры с антифризом должны иметь повышенную площадь поверхности по сравнению с работающими на воде. Для их расчета необходимо учитывать свойства самой жидкости.

Преимущества и недостатки

Регистры отопления из гладких труб имеют массу преимуществ:

  • Для помещений большой площади являются одним из лучших вариантов отопительных приборов. За счет значительной протяженности они обеспечивают равномерный прогрев и создают комфортные условия. Обогрев получается не локальным, а обширным.
  • Гидравлическое сопротивление очень маленькое по сравнению с чугунными или стальными радиаторами. Это позволяет заметно уменьшить потери давления в системе, а соответственно и затраты на перекачку теплоносителя. Эта же особенность дает возможность применять для больших помещений открытую систему отопления с естественной циркуляцией.
  • Прямые участки труб больших диаметров менее подвержены заиливанию и зарастанию в отличие от радиаторов сложной формы. Поэтому регистры отопления практически не нуждаются в промывке.
  • Простая конструкция может быть изготовлена своими руками из доступных материалов с получением существенной экономии.
  • Срок службы достаточно большой, минимум 25 лет. Степень надежности зависит в основном от качества сварных швов.
  • Гладкая поверхность обеспечивает удобство очистки. Эта особенность позволяет использовать регистры в помещениях с повышенными санитарными нормами.
  • Удобны для сушки полотенца, белья и одежды.

К недостаткам регистров из гладких труб можно отнести:

  • Малая поверхность нагрева на единицу длины, что заставляет применять приборы больших габаритов;
  • Большая металлоемкость;
  • Большие диаметры заставляют использовать большой объем теплоносителя, что делает систему очень инерционной и трудно регулируемой;
  • Непривлекательный внешний вид бюджетных моделей и огромная цена нестандартных дизайнерских конфигураций.

Заключение

Регистры отопления из гладких труб являются долговечными «неубиваемыми» приборами с хорошими эксплуатационными характеристиками. Они имеют относительно простую конструкцию, их расчет и сборку вполне можно выполнить самостоятельно.

Особенности гладкотрубных регистров обуславливают их сферу применения. Эти отопительные приборы можно встретить в общественных зданиях, лечебных учреждениях, складах, мастерских, гаражах, оранжереях, теплицах, ангарах, промышленных цехах. Трубные радиаторы являются идеальным решением для ванных комнат, больших помещений и нестандартных архитектурных форм. В отдельных случаях может быть оправдана их установка для отопления частного дома.

Источник

Adblock
detector